ARITHMÉTIQUE, ALGÈBRE MODULAIRE, GROUPES CYCLIQUES

$\boxed{1}$ **CCINP 66** On note *p* un entier naturel supérieur ou égal à 2.

On considère dans \mathbb{Z} la relation d'équivalence \mathscr{R} définie par : $x\mathscr{R}$ $y \overset{\text{déf.}}{\Longleftrightarrow} \exists k \in \mathbb{Z}$ tel que x - y = kp. On note $\mathbb{Z}/p\mathbb{Z}$ l'ensemble des classes d'équivalence pour cette relation \mathscr{R} .

- 1. Quelle est la classe d'équivalence de 0? Quelle est celle de *p*?
- Donner soigneusement la définition de l'addition usuelle et de la multiplication usuelle dans Z/pZ.
 On justifiera que ces définitions sont cohérentes.
- 3. On admet que, muni de ces opérations, $\mathbb{Z}/p\mathbb{Z}$ est un anneau. Démontrer que $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier.

Solution de 1: CCINP 66

- 1. Les classes d'équivalences de 0 et de p sont toutes deux égales à l'ensemble des multiples de p, c'est-à-dire à $p\mathbb{Z}$.
- 2. Soit $(\overline{a}, \overline{b}) \in (\mathbb{Z}/p\mathbb{Z})^2$. On pose $\overline{a} + \overline{b} = \overline{a+b}$ et $\overline{a} \times \overline{b} = \overline{ab}$.

Cette définition est cohérente car elle ne dépend pas des représentants a et b choisis pour \overline{a} et \overline{b} .

En effet, soit $(a', b') \in \mathbb{Z}^2$ tel que $\overline{a'} = \overline{a}$ et $\overline{b'} = \overline{b}$.

Alors il existe $n \in \mathbb{Z}$ tel que a' = a + np et il existe $m \in \mathbb{Z}$ tel que b' = b + mp.

Donc a' + b' = a + b + (n + m)p, c'est-à-dire $\overline{a' + b'} = \overline{a + b}$. Et a'b' = ab + (am + bn + nmp)p, c'est-à-dire $\overline{a'b'} = \overline{ab}$.

3. Supposons *p* premier.

Alors $\mathbb{Z}/p\mathbb{Z}$ est commutatif et non réduit à $\{\bar{0}\}$ car $p \ge 2$.

Soit $\bar{a} \in \mathbb{Z}/p\mathbb{Z}$ tel que $\bar{a} \neq \bar{0}$.

 $\bar{a} \neq \bar{0}$ donc p ne divise pas a . Or p est premier donc p est premier avec a.

Par le théorème de Bézout, il existe $(u, v) \in \mathbb{Z}^2$ tel que au + pv = 1 donc $\bar{a} \times \bar{u} = \bar{1}$.

Donc \overline{a} est inversible et $(\overline{a})^{-1} = \overline{u}$.

Ainsi, les éléments non nuls de $\mathbb{Z}/p\mathbb{Z}$ sont inversibles et finalement $\mathbb{Z}/p\mathbb{Z}$ est un corps. Supposons que $\mathbb{Z}/p\mathbb{Z}$ est un corps.

Soit $k \in [2, p-1]$.

 $\overline{k} \neq \overline{0}$ donc, comme $\mathbb{Z}/p\mathbb{Z}$ est un corps, il existe $k' \in \mathbb{Z}$ tel que $\overline{k} \, \overline{k'} = \overline{1}$.

C'est-à-dire il existe $v \in \mathbb{Z}$ tel que kk' = 1 + vp c'est-à-dire k'k - vp = 1.

Donc, d'après le théorème de Bézout, $k \wedge p = 1$ et donc, comme $k \neq 1$, k ne divise pas p.

On en déduit que les seuls diviseurs positifs de p sont 1 et p.

Donc p est premier.

2 CCINP 86 - Petit théorème de Fermat

- 1. Soit $(a, b, p) \in \mathbb{Z}^3$. Prouver que : si $p \land a = 1$ et $p \land b = 1$, alors $p \land (ab) = 1$.
- 2. Soit *p* un nombre premier.
 - (a) Prouver que $\forall k \in [1, p-1]$, p divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$
 - (b) Prouver que : $\forall n \in \mathbb{N}, \ n^p \equiv n \ [p]$. **Indication** : procéder par récurrence.
 - (c) En déduire, pour tout entier naturel n, que : p ne divise pas $n \Longrightarrow n^{p-1} \equiv 1$ [p].

Solution de 2 : CCINP 86 - Petit théorème de Fermat

Arithmétique, algèbre modulaire, groupes cycliques - page 1

1. On suppose $p \wedge a = 1$ et $p \wedge b = 1$.

D'après le théorème de Bézout,

 $\exists (u_1, v_1) \in \mathbb{Z}^2 \text{ tel que } u_1 p + v_1 a = 1. (1)$

 $\exists (u_2, v_2) \in \mathbb{Z}^2 \text{ tel que } u_2 p + v_2 b = 1.$ (2)

En multipliant les équations (1) et (2), on obtient :

$$\underbrace{(u_1u_2p+u_1v_2b+u_2v_1a)}_{\in \mathbb{Z}}p+\underbrace{(v_1v_2)}_{\in \mathbb{Z}}(ab)=1.$$

Donc, d'après le théorème de Bézout, $p \wedge (ab) = 1$.

2. Soit *p* un nombre premier.

(a) Soit
$$k \in [1, p-1]$$
. $\binom{p}{k} = \frac{p!}{k!(p-k)!} = \frac{p(p-1)...(p-k+1)}{k!}$.

Donc
$$\binom{p}{k} k! = p(p-1)...(p-k+1).$$

donc $p \mid \binom{p}{k} k!$. (3)

Or, $p \wedge k = 1$ (car p est premier) donc, d'après 1., $p \wedge k! = 1$.

Donc, d'après le lemme de Gauss, (3) $\Longrightarrow p \mid \binom{p}{k}$

(b) Procédons par récurrence sur n.

Pour n = 0 et pour n = 1, la propriété est vérifiée.

Soit $n \in \mathbb{N}$.

Supposons que la propriété (P_n) : $n^p \equiv n \ [p]$ soit vérifiée.

Alors, d'après la formule du binôme de Newton, $(n+1)^p = n^p + \sum_{k=1}^{p-1} {p \choose k} n^k + 1$. (4)

Or
$$\forall k \in [1, p-1], p \mid \binom{p}{k} \text{ donc } p \mid \sum_{k=1}^{p-1} \binom{p}{k} n^k$$
.

Donc d'après (4) et (P_n) , $(n+1)^p \equiv n+1$ [p] et (P_{n+1}) est vraie.

(c) Soit $n \in \mathbb{N}$ tel que p ne divise pas n.

Comme *p* est premier, alors $p \wedge n = 1$.

La question précédente donne p divise $n^p - n = n(n^{p-1} - 1)$.

Or comme p est premier avec n, on en déduit, d'après le lemme de Gauss, que p divise $n^{p-1} - 1$. Ce qui signifie que $n^{p-1} \equiv 1$ [p]. (petit théorème de Fermat).

CCINP 94

- 1. Énoncer le théorème de Bézout dans Z.
- 2. Soit *a* et *b* deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$. Prouver que : $(a|c \text{ et }b|c) \iff ab|c$.
- 3. On considère le système (S) : $\begin{cases} x \equiv 6 \mod(17) \\ x \equiv 4 \mod(15) \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des questions précédentes la résolution dans \mathbb{Z} du système (S).

Solution de 3 : CCINP 94

1. Théorème de Bézout :

Soit $(a, b) \in \mathbb{Z}^2$.

 $a \wedge b = 1 \iff \exists (u, v) \in \mathbb{Z}^2 / au + bv = 1.$

2. Soit $(a, b) \in \mathbb{N}^2$. On suppose que $a \land b = 1$. Soit $c \in \mathbb{N}$.

Prouvons que $ab|c \Longrightarrow a|c \operatorname{et} b|c$.

Si ab|c alors $\exists k \in \mathbb{Z} / c = kab$.

Alors, c = (kb)a donc a|c et c = (ka)b donc b|c.

Prouvons que $(a|c \operatorname{et} b|c) \Longrightarrow ab|c$.

$$a \wedge b = 1$$
 donc $\exists (u, v) \in \mathbb{Z}^2 / au + bv = 1$. (1)

De plus a|c donc $\exists k_1 \in \mathbb{Z} / c = k_1 a$. (2)

De même, b|c donc $\exists k_2 \in \mathbb{Z} / c = k_2 b$. (3)

On multiplie (1) par c et on obtient cau + cbv = c.

Alors, d'après (2) et (3), $(k_2b)au + (k_1a)bv = c$, donc $(k_2u + k_1v)(ab) = c$ et donc ab|c.

On a donc prouvé que $(a|c \operatorname{et} b|c) \iff ab|c$.

3. (a) **Première méthode** (méthode générale) :

Soit $x \in \mathbb{Z}$.

$$x \text{ solution de}(S) \iff \exists (k,k') \in \mathbb{Z}^2 \text{ tel que } \left\{ \begin{array}{l} x = 6 + 17k \\ x = 4 + 15k' \end{array} \right.$$

$$\iff \exists (k,k') \in \mathbb{Z}^2 \text{ tel que } \left\{ \begin{array}{l} x = 6 + 17k \\ x = 6 + 17k \\ 6 + 17k = 4 + 15k' \end{array} \right.$$

Or
$$6 + 17k = 4 + 15k' \iff 15k' - 17k = 2$$
.

Pour déterminer une solution particulière x_0 de (S), il suffit donc de trouver une solution particulière (k_0, k'_0) de l'équation 15k' - 17k = 2.

Pour cela, cherchons d'abord, une solution de l'équation 15u + 17v = 1.

17 et 15 sont premiers entre eux.

Déterminons alors un couple (u_0, v_0) d'entiers relatifs tel que $15u_0 + 17v_0 = 1$.

On a: $17 = 15 \times 1 + 2$ puis $15 = 7 \times 2 + 1$.

Alors
$$1 = 15 - 7 \times 2 = \overline{15} - 7 \times (17 - 15 \times 1) = 15 - 17 \times 7 + 15 \times 7 = 15 \times 8 - 17 \times 7$$

Donc $8 \times 15 + (-7) \times 17 = 1$

Ainsi, $16 \times 15 + (-14) \times 17 = 2$.

On peut prendre alors $k'_0 = 16$ et $k_0 = 14$.

Ainsi, $x_0 = 6 + 17 \times k_0 = 6 + 17 \times 14 = 244$ est une solution particulière de (S).

Deuxième méthode:

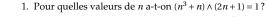
En observant le système (S), on peut remarquer que $x_0 = -11$ est une solution particulière. Cette méthode est évidemment plus rapide mais ne fonctionne pas toujours.

(b)
$$x_0$$
 solution particulière de (S) donc $\begin{cases} x_0 = 6 & [17] \\ x_0 = 4 & [15] \end{cases}$.
On en déduit que x solution de (S) si et seulement si $\begin{cases} x - x_0 = 0 & [17] \\ x - x_0 = 0 & [15] \end{cases}$

c'est-à-dire x solution de (S) \iff $(17|x-x_0 \text{ et } 15|x-x_0)$.

Or $17 \land 15 = 1$ donc d'après 2., x solution de (S) \iff $(17 \times 15)|x - x_0$.

Donc l'ensemble des solutions de (S) est $\{x_0 + 17 \times 15k, k \in \mathbb{Z}\} = \{244 + 255k, k \in \mathbb{Z}\}.$



2. Pour quelles valeurs de $n \in \mathbb{Z}$ a-t-on $(n+2)|(2n^2+9n+13)$?

3. Montrer que pour tout $n \in \mathbb{Z}$, $(21n+4) \land (14n+3) = 1$.

Solution de 5:

5

1.
$$(n^3 + n) \land (2n + 1) = 1$$
 si et seulement si

$$n(n^2+1) \wedge (2n+1) = 1$$

si et seulement si

$$\begin{cases} n \wedge (2n+1) = 1 \\ (n^2+1) \wedge (2n+1) = 1 \end{cases}$$

Il s'agit de la propriété $ab \land c = 1 \iff a \land c = 1$ et $b \land c = 1$: le sens direct s'obtient avec le théorème de Bézout ou en s'intéressant au diviseurs communs possibles de a et c d'une part et de b et c d'autre part, le sens réciproque s'obtient en multipliant des relations de Bézout : 1 = (au + cv)(bu' + cv') = abU + cV...

Or, en se souvenant de la propriété d'Euclide $a \wedge b = (a - bq) \wedge b$ (pas nécessairement une division euclidienne), on obtient $n \wedge (2n+1) = n \wedge 1 = 1$ toujours vrai.

Puis, toujours avec cette propriété $(n^2+1) \wedge (2n+1) = (n^2-2n) \wedge (2n+1) = n(n-2) \wedge (2n+1)$.

$$(n^3 + n) \wedge (2n + 1) = 1 \Longleftrightarrow \begin{cases} n \wedge (2n + 1) = 1 \\ (n - 2) \wedge (2n + 1) = 1 \end{cases} \iff (n - 2) \wedge (2n + 1) = 1 \iff (n - 2) \wedge \left(2n + 1 - 2(n - 2)\right) = (n - 2) \wedge 5 = 1$$

Comme 5 est premier, on en déduit que les solutions sont les entiers n tels que 5 (n-2) c'est-à-dire tels que $n \not\equiv 2$ [5].

2. On écrit $2n^2 + 9n + 13 = 2(n+2)^2 + n + 5 = 2(n+2)^2 + (n+2) + 3$.

Donc $(n+2)|(2n^2+9n+13)$ si et seulement si n+2|3 si et seulement si $n+2 \in \{-1,1,-3,3\}$. Les solutions sont -3, -1, -5, 1 (ce que l'on peut effectivement vérifier).

3. Avec la propriété d'Euclide, si $n \in \mathbb{Z}$,

$$(21n+4) \wedge (14n+3) = (21n+4-(14n+3)) \wedge (14n+3) = (7n+1) \wedge (14n+3-2(7n+1)) = (7n+1) \wedge 1 = 1$$

Autre méthode, avec une relation de Bézout :

$$-2(21n+4)+3(14n+3)=1.$$

Nombres de Mersenne ¹- Très classique - Oral Centrale

Montrer que si $a \in \mathbb{N}$, $n \in \mathbb{N} \setminus \{0,1\}$ tel que $a^n - 1$ est premier, alors a = 2 et n est premier.

Solution de 6 : Nombres de Mersenne²- Très classique - Oral Centrale

La factorisation

$$a^{n}-1=(a-1)(a^{n-1}+\cdots+1)$$

donne la première réponse, puis

$$2^{n_1 n_2} - 1 = (2^{n_1})^{n_2} - 1 = (2^{n_1} - 1)(...)$$

donne la deuxième.

Nombres de Fermat³- Très classique - Oral Mines

- 1. Soient $a, n \in \mathbb{N}^*$, $a \ge 2$. Montrer que si $a^n + 1$ est premier, a est pair et n est une puissance de 2. On appelle nombres de Fermat les nombres $\bar{F}_n = 2^{2^n} + 1$. Ils sont premiers pour n de 2 à 4, mais ne le sont pas pour n de 5 à 32 (contrairement à ce que conjectura Fermat).
- 2. Démonstration de 1734 d'Euler du fait que F₅ n'est pas premier.
 - (a) Comparer $5^4 + 2^4$ et $1 + 5 \times 2^7$ (sans calculatrice!).
 - (b) En déduire que $5^4 \times 2^{28} \equiv 1$ [641].
 - (c) Conclure que 641 divise F_5 .
- 3. Montrer que pour tout $n \in \mathbb{N}$, $F_{n+1} = (F_n 1)^2 + 1$ et en déduire que F_n et F_{n+1} sont premiers entre eux.
- 4. Pour $n \in \mathbb{N}$, établir que $F_{n+1} = \prod_{k=0}^{n} F_k + 2$. En déduire que les F_n sont premiers entre eux deux à deux. Retrouver le fait que le nombre de nombres premiers est infini.

^{1.} Un tel nombre est alors appelé nombre de Mersenne (mathématicien français 1588-1648). La réciproque est fausse (2¹¹ – 1 = 23 × 89). Les plus grands nombres premiers connus actuellement sont des nombres de Mersenne : 2⁷⁷ 232 91⁷ – 1 a été découvert le 26 décembre 2017 (23 249 425 chiffres en base décimale).

^{3.} Ils interviennent dans la constructibilité à la règle et au compas des polygones réguliers.

Solution de 7 : Nombres de Fermat 4- Très classique - Oral Mines

Si n a un facteur premier impair p, on écrit

$$2^{n} + 1 = 2^{mp} + 1 = (2^{m})^{p} + 1$$

Or on connaît très bien

$$a^n - b^n = (a - b)(\dots)$$

Mais, si n est impair, remplaçant b par -b, on en déduit

$$a^{n} + b^{n} = (a + b)(a^{n-1} - ba^{n-2} + \dots + b^{n-1})$$

Appliqué à notre situation, on trouve

$$2^{n} + 1 = (2^{m} + 1)(2^{m(p-1)} - 2^{m(p-2)} \cdots + 1)$$

On prend bien soin de justifier que c'est une vraie factorisation $(1 < 2^m + 1 < 2^n + 1)$. Et on a résolu la première question. Comme souvent, c'est l'exercice classique sur les nombres de Mersenne (si $a^n - 1$ est premier, a = 2 et n est premier) qui peut donner l'idée

- En s'inspirant de la démonstration sur l'infinité des nombres premiers, montrer qu'il existe une infinité de nombres premiers de la forme $4k-1^5$.
- Justifier l'existence de 1000 entiers consécutifs sans nombre premier.

Solution de 9:

Il suffit de considérer les entiers de 1001! + 2 à 1001! + 1001.

Formule de Legendre - Très classique - Oraux divers Combien y a-t-il de zéros à la fin de 100!? De 1000!? De 2021!?

Montrer que $\nu_p(n!) = \sum_{k=0}^{+\infty} \left| \frac{n}{n^k} \right|$ pour p premier et $n \in \mathbb{N}^*$.

- On note p_n le n^e nombre premier et $\pi(x)$ le nombre de nombres premiers $\leq x$.
 - 1. Montrer que pour tout $n \ge 1$, $p_{n+1} \le p_1 \cdots p_n + 1$.
 - 2. Montrer que pour tout $n \ge 1$, $2n-1 \le p_n \le 2^{2^{n-1}}$.
 - 3. Justifier ⁶ que $\forall x > 0$, $\ln(\ln x) < \pi(x) < x$.
- En utilisant l'algorithme d'Euclide, montrer que pour tout $n, m \in \mathbb{N}$, $2^m \wedge 2^m = 2^{n \wedge m}$.
- Oral Centrale Déterminer le chiffre des unité de 1587⁴¹³.

Solution de 13 : Oral Centrale

- Soit $n = 4444^{4444}$. Calculer la somme des chiffres de la somme des chiffres de n.
- 5. Le théorème de Dirichlet (difficile) affirme qu'il existe une infinité de nombres premiers congrus à a modulo b si a et b sont premiers entre
- 6. Le (difficile) théorème de Hadamard et De la Vallée-Poussin dit « Théorème des Nombres Premiers » affirme que π(x) ~ $\frac{x}{\ln x}$, ou, de manière équivalente, $p_n \sim n \ln n$.

Solution de 14:

- $f: k \mapsto \text{(somme des chiffres de } k\text{)}$. Calculer $f \circ f \circ f(n)$.
- $f(n) \equiv n$ [9]. Or $4444 = 9 \times 493 + 7$, donc $4444 \equiv 7$ [9] et $4444^{4444} \equiv 7^{4444}$ [9].
- Mais $7^2 \equiv 4$ [9], $7^3 \equiv -2$ [9] et $7^3 \equiv 1$ [9]. D'où $7^{4444} = 7^{3k+1} \equiv 7$ [9] donc $f(n) \equiv 7$ [9]. Puis $f(f(f(n))) \equiv 7$ [9]. De plus, $n \le 10000^{5000} = 10^{20000}$. Donc *n* possède au plus 20 000 chiffres et $f(n) \le 9 \times 20000 = 180000$.
- Puis $f(f(n)) \le 1 + 8 + 4 \times 9 = 45$ et f(f(n)) = f(n) = 7 [9].
- Donc f(f(f(n))) < 4+9 = 13 et f(f(f(n))) = 7 [9]. Donc f(f(f(n))) = 7.

[15]

Oral Mines

Soit $p \ge 5$ un nombre premier. Montrer que 24 divise $p^2 - 1$.

Solution de 15 : Oral Mines

p est congru à 1 ou à -1 modulo 3 (car p > 3), donc p + 1 ou p - 1 est divisible par 3. Donc $p^2 - 1$, leur produit, l'est. De plus, p, premier et impair car > 2, est congru à 1, 3, 5 ou 7 modulo 8. Donc son carré est congru à 1, 1, 1 ou 1 modulo 8. Donc p^2 – 1 est divisible par 3 et par 8, qui sont premiers entre eux, il est donc divisible par 24.

Autre méthode : remarquer que parmi p-1, p et p+1, l'un est divisible par 3 et parmi p-1, p, p+1, p+2, l'un est divisible par 4.

Montrer que pour tout $n \in \mathbb{N}$

1. $6 \mid 5n^3 + n$

3. $5 \mid 2^{2n+1} + 3^{2n+1}$

5. $9 \mid 4^n - 1 - 3n$

- 2. $7 \mid 3^{2n+1} + 2^{n+2}$
- 4. $11 \mid 3^{8n}5^4 + 5^{6n}7^3$
- 6. $15^2 \mid 16^n 1 15n$.

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le

partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces. Dans un naufrage ultérieur, seul le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates?

$$\underbrace{18} \quad \text{Résoudre } \left\{ \begin{array}{l} \frac{x+\overline{5}y=\overline{8}}{3x+\overline{7}y=\overline{9}} & \text{dans } \mathbb{Z}/13\mathbb{Z}. \end{array} \right.$$

Déterminer les carrés, et les sommes de 2 ou 3 carrés dans Z/8Z.

En déduire que Si $n \in \mathbb{N}$ est de la forme 8k-1, il ne peut pas s'écrire comme somme de trois carrés d'entiers.

Carrés dans $\mathbb{Z}/p\mathbb{Z}$

- 1. Faire la liste des éléments de Z/17Z qui sont des carrés. Combien y-en-a-t-il?
- 2. Soit p un nombre premier impair. On note A l'ensemble des carrés dans $\mathbb{Z}/p\mathbb{Z}$: $x \in A \iff \exists y \in \mathbb{Z}/p\mathbb{Z}$, $x = y^2$.
 - (a) Déterminer le nombre d'éléments de A.
 - (b) Démontrer que, si a est un élément non nul de A, $x \mapsto xa$ est une bijection de A sur lui-même.
 - (c) Démontrer que, si a est un élément de $\mathbb{Z}/p\mathbb{Z} \setminus A$, $x \mapsto xa$ est une bijection de $A \setminus \{0\}$ sur $\mathbb{Z}/p\mathbb{Z} \setminus A$.

Résolution d'une équation du second degré dans $\mathbb{Z}/p\mathbb{Z}$

1. Résoudre l'équation

$$x^2 - \overline{13}x + \overline{8} = \overline{0}$$

dans Z/17Z.

(On essayera de suivre la même démarche que sur R : mise sous forme canonique... reprendre donc la démarche suivie dans le cours de première)

2. Résoudre l'équation

$$x^2 - \overline{2}x + \overline{4} = 0$$

dans $\mathbb{Z}/26\mathbb{Z}$.

22 Théorème de Wilson (un test de primalité)

- 1. Montrer que si $(p-1)! \equiv -1$ [p], alors p est premier.
- 2. Réciproquement, on suppose que p est premier. En rassemblant les termes du produit par paires, justifier que $(p-1)! \equiv -1 \ [p]$.

23 Cryptographie à clé publique RSA ⁷

La cryptographie à clé publique est une méthode pour crypter un message à destination d'une personne (Alice), par une méthode que tout le monde connaît, mais de façon à ce que seul le destinataire puisse décoder le message Les messages considérés ici seront des nombres (par exemple fabriqués en remplaçant chacune des lettres du message à envoyer par son code ASCII, après découpage en morceaux pour obtenir des nombres pas trop grands).

La destinataire Alice choisit deux « grands » nombres premiers p et q, et calcule le produit N = pq. Elle rend N public et surtout garde pour elle les valeurs de p et q. Elle choisit ensuite un entier e premier avec (p-1)(q-1) et le donne à tout le monde : (N,e) sera la clé publique. Elle choisit en général e ayant peu de termes dans sa décomposition en binaire, pour que le cryptage ne demande pas trop longtemps.

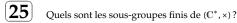
Comme Alice est la seule à connaître p et q, elle est également la seule à pouvoir calculer (p-1)(q-1), et donc à déterminer un entier de Bézout d tel que de $de \equiv 1$ [(p-1)(q-1)]. d sera la clé de décodage, que l'on conserve bien sûr très secrète.

Le principe de la méthode est alors le suivant. Bob, qui veut envoyer un message M à Alice calcule $M' \equiv M^e$ [N] et envoie M' à Alice. Celle-ci calcule ensuite $M'' \equiv M'^d$ [N].

Montrer que M et M'' sont égaux modulo N, et donc que Alice peut décoder le message de Bob pourvu que M soit inférieur à N.

On note $((\mathbb{Z}/17\mathbb{Z})^{\times}, \times)$ le groupe des inversibles de l'anneau $(\mathbb{Z}/17\mathbb{Z}, +, \times)$. Montrer qu'il est cyclique (en cherchant, tout simplement, un générateur de ce groupe). Puis donner tous les générateurs de $((\mathbb{Z}/17\mathbb{Z})^{\times}, \times)$.

On peut montrer que, si p est premier, $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ est cyclique. Ce n'est pas au programme. Ses éléments générateurs sont dit primitifs. On peut montrer qu'il y en a exactement $\varphi(p-1)$.



Solution de 25 :

Soit G un sous-groupe fini de (\mathbf{C}^* , \times). Tous ses éléments sont d'ordre fini, divisant l'ordre du groupe. Soit d = |G|. Tous les éléments de G vérifient $z^d = 1$. Donc G est inclus dans \mathbf{U}_d . Mais ils ont même cardinal, ils sont donc égaux.

26 Déterminer tous les morphismes de groupes de $(\mathbb{Z}/n\mathbb{Z}, +)$ dans (\mathbb{C}^*, \times) .

Solution de 26:

Soit ϕ un tel morphisme. Si on connaît $\phi(\overline{1})$, on connaît ϕ .

[Plus généralement, pour connaître un morphisme d'un groupe cyclique (G, *) dans un groupe (H,.), il suffit de connaître l'image par ce morphisme d'un générateur de G. En effet, si g est un tel générateur, on a pour tout $n \in \mathbb{Z}$: $\phi(g^n) = (\phi(g))^n$, ce qui donne l'image par ϕ de tous les éléments de G].

Soit $\omega = \phi(1)$. On a, par propriété de morphisme (en essayant de ne pas trop se tromper de loi : au départ, l'addition, à l'arrivée la multiplication),

$$\phi(n\overline{1}) = \omega^n$$

Mais $n\overline{1} = \overline{n} = \overline{n} = \overline{0}$, et un morphisme transforme l'élément neutre du groupe de départ en l'élément neutre du groupe d'arrivée. Donc $\omega^n = 1$. Et donc $\omega \in \mathcal{U}_n$.

Réciproquement, soit ω un élément de \mathbf{U}_n . On montre que l'application

$$\phi_{\omega}: \mathbf{Z}/n\mathbf{Z} \mapsto \mathbf{C}^* \overline{a} \omega^a$$

est bien définie (il s'agit pour cela de montrer que, si $a \equiv b[n]$, $\omega^a = \omega^b$, ce qui se fait sans trop de mal). C'est assez clairement un morphisme. Les ϕ_{ω} , $\omega \in \mathbf{U}_n$ sont les morphismes cherchés.

Déterminants arithmétiques Soient $n \in \mathbb{N}^*$, $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ et $\psi : \mathbb{N} \to \mathbb{C}$. On suppose que

$$\forall i, j \in [1, n], \quad a_{i,j} = \sum_{k|i \text{ et } k|j} \psi(k)$$

Le but de l'exercice est de calculer det A à l'aide de ψ .

- **1.** On introduit la matrice $B = (b_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbb{C})$ où $b_{i,j} = \delta_{i|j} = \begin{cases} 1 & \text{si } i|j, \\ 0 & \text{sinon.} \end{cases}$
 - **1.a)** Montrer que $A = B^{\mathsf{T}}DB$ où D est diagonale dont les cœfficients sont à préciser.
 - **1.b)** Justifier que $\det B = 1$.
 - **1.c)** Exprimer $\det A$ en fonction $\det \psi$.

2. Applications.

- 2.a) Calculer det A lorsque a_{i,j} est le nombre de diviseurs communs à i et j.
 On pourra conjecturer le résultat avec un logiciel de calcul numérique ou formel.
- **2.b)** Calculer det *A* lorsque $a_{i,j}$ est la somme des diviseurs communs à i et j. *On pourra conjecturer le résultat avec un logiciel de calcul numérique ou formel.*
- **3.** On souhaite calculer le déterminant de Smith : det *A* lorsque $a_{i,j} = i \land j$ est le plus grand diviseur commun à i et j.
 - **3.a)** Pour $k \geqslant 2$, on appelle $\varphi(k)$ le nombre d'entiers ℓ tels que $0 \leqslant \ell \leqslant k-1$ et $k \land \ell = 1$, et on pose $\varphi(1) = 1$. La fonction φ de \mathbb{N}^* dans \mathbb{N} ainsi définie est appelée *indicatrice d'Euler*.
 - (i) Soient $m \in \mathbb{N}^*$ et $k \in \mathbb{N}$ un diviseur de m. Parmi tous les nombres rationnels de la forme $\frac{q}{m}$ où $1 \le q \le m$, combien y en a-t-il qui s'écrivent sous forme irréductible avec k au dénominateur?
 - (ii) Montrer que, si $m \in \mathbb{N}^*$, $m = \sum_{k|m} \varphi(k)$.
 - **3.b)** En déduire det *A* en fonction de φ .

Solution de 27 : Déterminants arithmétiques

1. **1.a)** Si $i, j \in [1, n]$,

$$a_{i,j} = \sum_{k|i \text{ et } k|j} \psi(k) = \sum_{k=1}^{n} \delta_{k|i} \psi(k) \delta_{k|j} = \sum_{k=1}^{n} b_{k,i} \psi(k) b_{k,j} = (B^{\mathsf{T}} D B)_{i,j}$$

avec $D = \operatorname{diag}(\psi(1), \dots, \psi(n))$.

- **1.b)** Pour tout i, j, i | i et si $i > j, i \nmid j$ donc B est triangulaire supérieure avec des 1 sur la diagonale, donc det B = 1.
- 1.c) On a obtenu dans la question précédente $A = B^{\mathsf{T}}CB$ donc det $A = \det B^{\mathsf{T}} \det C \det B$. Et comme det $B^{\mathsf{T}} = \det B = 1$

d'après c),
$$\det A = \det C = \begin{vmatrix} \psi(1) \\ \vdots \\ \psi(n) \end{vmatrix}$$
. Finalement, $\det A = \prod_{k=1}^{n} \psi(k)$.

2.a) Remarquons que le nombre de diviseurs communs à i et j est $a_{i,j} = \sum_{k|i \text{ et } k|j} 1$. On peut donc appliquer le

résultat de la question **1.** avec $\psi \equiv 1$ et donc $\det A = 1$.

2.b) Remarquons que la somme des diviseurs communs à i et j est $a_{i,j} = \sum_{k|i \text{ et } k|j} k$. On peut donc appliquer le

résultat de la question **1.** avec $\psi = \operatorname{id}$ et donc $\det A = \prod_{k=1}^{n} k = k!$.

^{7.} Rivest, Shamir et Adleman, 1979

3.a)

(i) Notons F_k l'ensemble des nombres rationnels de la forme $\frac{q}{m}$ où $1 \le q \le m$ qui s'écrivent sous forme irréductible avec k au dénominateur et $E_k = \{\ell \in [\![0,k-1]\!] \mid \ell \wedge k = 1\}$ si $k \ne 1$ (remarquons qu'alors $0 \notin E_k$), $E_1 = \{1\}$.

L'application
$$f: \begin{bmatrix} E_k & \longrightarrow & F_k \\ \ell & \longmapsto & \frac{\ell}{k} \end{bmatrix}$$
 est bijective ⁸. En effet,

- si k = 1, f est l'identité de $F_1 = E_1 = \{1\}$;
- sinon,
- * elle est bien définie car si $\ell \in E_k$, $\frac{\ell}{k}$ est un nombre rationnel de la forme $\frac{q}{m}$ car k|m avec $1 \le q \le m$ car $\frac{\ell}{k} \in]0,1]$, qui s'écrit sous forme irréductible avec k au dénominateur car $\ell \wedge k = 1$ et donc $f(\ell) \in F_k$;
- * elle est *injective* car si $\ell, \ell' \in E_k$ tels que $f(\ell) = f(\ell')$, alors $\frac{\ell}{k} = \frac{\ell'}{k}$ donc $\ell = \ell'$;
- * elle est *surjective* car si $r \in F_k$, $r \in \mathbb{Q} \cap]0,1]$ et r s'écrit forme irréductible avec k au dénominateur, donc on a $l \in [\![1,k]\!]$ avec $k \wedge \ell = 1$ tel que $r = \frac{\ell}{k}$. Comme $k \neq 1$, $\ell \neq k$ donc $\ell \in [\![1,k-1]\!]$, $\ell \in E_k$ et donc $r = f(\ell)$.

Ainsi, le nombre de rationnels de la forme $\frac{q}{m}$ où $1 \le q \le m$ qui s'écrivent sous forme irréductible avec k au dénominateur est le nombre d'entiers l tels que $0 \le l \le k-1$ et $k \land l = 1$ si $k \ne 1$, l sinon : il y en a donc $\varphi(k)$.

(ii) Si on note $F = \{ \frac{q}{m} : 1 \leqslant q \leqslant m \}$, alors $F = \bigsqcup_{k|m} F_k$ car tout rationnel de F s'écrit de manière unique sous forme irréductible avec un diviseur de m au dénominateur.

Donc
$$|F| = \sum_{k|m} |F_k|$$
, et comme $|F| = \left| [[1, m]] \right| = m$, $\left(m = \sum_{k|m} \varphi(k) \right)$ d'après la question précédente.

3.b) $\det \left((i \wedge j)_{i,j} \right)$: D'après la question précédente, pour tous $i,j, i \wedge j = \sum_{k \mid i \wedge j} \varphi(k)$, donc comme $k \mid i \wedge j$ si et seulement si $k \mid i$ et $k \mid j, a_{i,j} = i \wedge j = \sum_{k \mid i \text{ et } k \mid j} \varphi(k)$. On peut donc appliquer la question 1. qui nous dit que

$$\det A = \prod_{k=1}^{n} \varphi(k).$$

^{8.} On peut aller un peu plus vite oralement en invoquant simplement l'existence et l'unicité de la forme irréductible des fractions.