Arithmétique, algèbre modulaire, groupes cycliques

- le fait que $a \wedge b = (a bq) \wedge b$ pour tout $q \in \mathbb{Z}$ permet parfois des simplifications intéressantes.
- Lorsque l'on manipule des équations avec pgcd et/ou ppcm, il est souvent intéressant de se ramener à des nombres premiers entre eux en posant x = dx' et y = dy' où d = x ∧ y.
- Savoir que $\mathbb{Z}/p\mathbb{Z}$ est un corps pour p premier (et seulement dans ce cas. Cela permet de faire des calculs « un peu comme dans \mathbb{R} ou \mathbb{C} »... Si n n'est pas premier, savoir trouver les inversibles de $\mathbb{Z}/n\mathbb{Z}$ (cours) et savoir que les autres sont des diviseurs de 0.
- Pour savoir si des nombres sont premiers entre eux, on peut penser au théorème de Bézout ou revenir à la définition (les diviseurs communs sont triviaux). Penser aussi aux nombres premiers :pas de diviseur premier en commun
- Pour des problèmes de divisibilité, penser à travailler avec des congruences. On peut aussi travailler dans $\mathbb{Z}/n\mathbb{Z}$.
- Tous les nombres premiers sont impairs... sauf 2, le seul pair. Penser à ce cas particulier. Et 1 n'est pas premier.
- En algèbre modulaire, on ne manipule jamais de grande valeur : penser à réduire systématiquement pour se ramener dans [0, n-1] (voire $\left[\frac{-n}{2}, \frac{n}{2}\right]$...)
- Savoir résoudre des systèmes de congruences : avec des modulos premiers entre eux, c'est le théorème chinois...
- Un exercice sur les groupes cycliques est souvent plus facile à résoudre en pensant à (\mathbb{U}_n, \times) qu'à $(\mathbb{Z}/nz, +)$.
- **1** CCINP 66 On note p un entier naturel supérieur ou égal à 2.

On considère dans \mathbb{Z} la relation d'équivalence \mathcal{R} définie par : $x \mathcal{R} y \stackrel{\text{déf.}}{\Longleftrightarrow} \exists k \in \mathbb{Z}$ tel que x - y = kp. On note $\mathbb{Z}/p\mathbb{Z}$ l'ensemble des classes d'équivalence pour cette relation \mathcal{R} .

- 1. Quelle est la classe d'équivalence de 0 ? Quelle est celle de p ?
- 2. Donner soigneusement la définition de l'addition usuelle et de la multiplication usuelle dans $\mathbb{Z}/p\mathbb{Z}$. On justifiera que ces définitions sont cohérentes.
- 3. On admet que, muni de ces opérations, $\mathbb{Z}/p\mathbb{Z}$ est un anneau. Démontrer que $\mathbb{Z}/p\mathbb{Z}$ est un corps si et seulement si p est premier.

2 CCINP 86 - Petit théorème de Fermat

- 1. Soit $(a,b,p) \in \mathbb{Z}^3$. Prouver que : si $p \wedge a = 1$ et $p \wedge b = 1$, alors $p \wedge (ab) = 1$.
- 2. Soit p un nombre premier.
 - (a) Prouver que $\forall k \in [\![1,p-1]\!]$, p divise $\binom{p}{k}k!$ puis en déduire que p divise $\binom{p}{k}$
 - (b) Prouver que : $\forall n \in \mathbb{N}, \ n^p \equiv n \ [p].$ Indication : procéder par récurrence.
 - (c) En déduire, pour tout entier naturel n, que : p ne divise pas $n \Rightarrow n^{p-1} \equiv 1$ [p].

(**3**) CCINP 94

- Énoncer le théorème de Bézout dans Z.
- 2. Soit a et b deux entiers naturels premiers entre eux. Soit $c \in \mathbb{N}$. Prouver que : (a|c et $b|c) \iff ab|c$.
- 3. On considère le système (S): $\begin{cases} x \equiv 6 \mod(17) \\ x \equiv 4 \mod(15) \end{cases}$ dans lequel l'inconnue x appartient à \mathbb{Z} .
 - (a) Déterminer une solution particulière x_0 de (S) dans \mathbb{Z} .
 - (b) Déduire des guestions précédentes la résolution dans \mathbb{Z} du système (S).
- f A savoir faire absolument Résoudre, dans \mathbb{Z} , 3x + 11y = 2 puis 14x + 35y = 5 et 14x + 35y = 7.

- 1. Pour quelles valeurs de n a-t-on $(n^3+n) \wedge (2n+1)=1$?
- 2. Pour quelles valeurs de $n \in \mathbb{Z}$ a-t-on $(n+2)|(2n^2+9n+13)$?
- 3. Montrer que pour tout $n \in \mathbb{Z}$, $(21n+4) \wedge (14n+3) = 1$.

6 Nombres de Mersenne - Très classique - Oral Centrale

Montrer que si $a \in \mathbb{N}, n \in \mathbb{N} \setminus \{0,1\}$ tel que $a^n - 1$ est premier, alors a = 2 et n est premier.

$\overline{f 7}$ Nombres de Fermat 3 - Très classique - Oral Mines

- 1. Soient $a, n \in \mathbb{N}^*$, $a \ge 2$. Montrer que si $a^n + 1$ est premier, a est pair et n est une puissance de 2. On appelle nombres de Fermat les nombres $F_n = 2^{2^n} + 1$. Ils sont premiers pour n de 2 à 4, mais ne le sont pas pour n de 5 à 32 (contrairement à ce que conjectura Fermat).
- 2. Démonstration de 1734 d'Euler du fait que F_5 n'est pas premier.
 - (a) Comparer $5^4 + 2^4$ et $1 + 5 \times 2^7$ (sans calculatrice!).
 - (b) En déduire que $5^4 \times 2^{28} \equiv 1$ [641].
 - (c) Conclure que 641 divise F_5 .
- 3. Montrer que pour tout $n \in \mathbb{N}$, $F_{n+1} = (F_n 1)^2 + 1$ et en déduire que F_n et F_{n+1} sont premiers entre eux.
- 4. Pour $n \in \mathbb{N}$, établir que $F_{n+1} = \prod_{k=0}^{n} F_k + 2$. En déduire que les F_n sont premiers entre eux deux à deux. Retrouver le fait que le nombre de nombres premiers est infini.
- En s'inspirant de la démonstration sur l'infinité des nombres premiers, montrer qu'il existe une infinité de nombres premiers de la forme $4k 1^5$.
- 9 Justifier l'existence de 1000 entiers consécutifs sans nombre premier.

10 Formule de Legendre - Très classique - Oraux divers

Combien y a-t-il de zéros à la fin de 100! ? De 1000! ? De 2021! ? Montrer que $v_p(n!) = \sum_{n=0}^{+\infty} \left| \frac{n}{n^k} \right|$ pour p premier et $n \in \mathbb{N}^*$.

- On note p_n le n^e nombre premier et $\pi(x)$ le nombre de nombres premiers $\leq x$.
 - 1. Montrer que pour tout $n \ge 1$, $p_{n+1} \le p_1 \cdots p_n + 1$.
 - 2. Montrer que pour tout $n \ge 1$, $2n-1 \le p_n \le 2^{2^{n-1}}$.
 - 3. Justifier ⁶ que $\forall x > 0$, $\ln(\ln x) < \pi(x) < x$.
 - En utilisant l'algorithme d'Euclide, montrer que pour tout $n,m\in\mathbb{N}$, $(2^n-1)\wedge(2^m-1)=2^{n\wedge m}-1$.
- 1. Un tel nombre est alors appelé nombre de Mersenne (mathématicien français 1588-1648). La réciproque est fausse $(2^{11}-1=23\times89)$. Les plus grands nombres premiers connus actuellement sont des nombres de Mersenne : 2^{77} 2^{32} $9^{17}-1$ a été découvert le 26 décembre 2017 (23 249 425 chiffres en base décimale).
- 3. Ils interviennent dans la constructibilité à la règle et au compas des polygones réguliers.
- 5. Le théorème de Dirichlet (difficile) affirme qu'il existe une infinité de nombres premiers congrus à a modulo b si a et b sont premiers entre eux.
- 6. Le (difficile) théorème de Hadamard et De la Vallée-Poussin dit «Théorème des Nombres Premiers » affirme que $\pi(x) \sim \frac{x}{\ln x}$ ou, de manière équivalente, $p_n \sim n \ln n$.

13 Oral Centrale Déterminer le chiffre des unité de 1587⁴¹³.

Soit $n=4444^{4444}$. Calculer la somme des chiffres de la somme des chiffres de la somme des chiffres de n.

15 Oral Mines

Soit $p \ge 5$ un nombre premier. Montrer que 24 divise $p^2 - 1$.

16) Montrer que pour tout $n \in \mathbb{N}$

2. $7 \mid 3^{2n+1} + 2^{n+2}$

1. $6 \mid 5n^3 + n$ **3.** $5 \mid 2^{2n+1} + 3^{2n+1}$

4. $11 \mid 3^{8n}5^4 + 5^{6n}7^3$ **6.** $15^2 \mid 16^n - 1 - 15n$.

5. $9 \mid 4^n - 1 - 3n$

Une bande de 17 pirates dispose d'un butin composé de N pièces d'or d'égale valeur. Ils décident de se le partager également et de donner le reste au cuisinier (non pirate). Celui ci reçoit 3 pièces. Mais

de se le partager également et de donner le reste du cuisinier (non pirate). Celui ci reçoit 3 pieces. Mais une rixe éclate et 6 pirates sont tués. Tout le butin est reconstitué et partagé entre les survivants comme précédemment; le cuisinier reçoit alors 4 pièces. Dans un naufrage ultérieur, seul le butin, 6 pirates et le cuisinier sont sauvés. Le butin est à nouveau partagé de la même manière et le cuisinier reçoit 5 pièces. Quelle est alors la fortune minimale que peut espérer le cuisinier lorsqu'il décide d'empoisonner le reste des pirates ?

 $\boxed{\textbf{18}} \quad \text{R\'esoudre} \left\{ \begin{array}{l} x + \overline{5}y = \overline{8} \\ \overline{3}x + \overline{7}y = \overline{9} \end{array} \right. \text{dans $\mathbb{Z}/13\mathbb{Z}$.}$

Déterminer les carrés, et les sommes de 2 ou 3 carrés dans $\mathbb{Z}/8\mathbb{Z}$.

En déduire que Si $n \in \mathbb{N}$ est de la forme 8k-1, il ne peut pas s'écrire comme somme de trois carrés d'entiers

20 Carrés dans $\mathbb{Z}/p\mathbb{Z}$

1. Faire la liste des éléments de Z/17Z qui sont des carrés. Combien v-en-a-t-il?

2. Soit p un nombre premier impair. On note A l'ensemble des carrés dans $\mathbb{Z}/p\mathbb{Z}$: $x \in A \iff \exists y \in \mathbb{Z}/p\mathbb{Z}$, $x = y^2$.

(a) Déterminer le nombre d'éléments de A.

(b) Démontrer que, si a est un élément non nul de A, $x \mapsto xa$ est une bijection de A sur lui-même.

(c) Démontrer que, si a est un élément de $\mathbb{Z}/p\mathbb{Z}\setminus A$, $x\mapsto xa$ est une bijection de $A\setminus\{0\}$ sur $\mathbb{Z}/p\mathbb{Z}\setminus A$.

 $oxed{21}$ Résolution d'une équation du second degré dans $^{\mathbb{Z}}/_{p\mathbb{Z}}$

1. Résoudre l'équation

$$x^2 - \overline{13}x + \overline{8} = \overline{0}$$

dans $\mathbb{Z}/_{17\mathbb{Z}}$.

(On essayera de suivre la même démarche que sur \mathbb{R} : mise sous forme canonique...reprendre donc la démarche suivie dans le cours de première)

2. Résoudre l'équation

$$x^2 - \overline{2}x + \overline{4} = 0$$

dans $\mathbb{Z}/26\mathbb{Z}$.

22 Théorème de Wilson (un test de primalité)

1. Montrer que si $(p-1)! \equiv -1$ [p], alors p est premier.

2. Réciproquement, on suppose que p est premier. En rassemblant les termes du produit par paires, justifier que $(p-1)! \equiv -1 \ [p]$.

23 Cryptographie à clé publique RSA

La cryptographie à clé publique est une méthode pour crypter un message à destination d'une personne (Alice), par une méthode que tout le monde connaît, mais de façon à ce que seul le destinataire puisse décoder le message. Les messages considérés ici seront des nombres (par exemple fabriqués en remplaçant chacune des lettres du message à envoyer par son code ASCII, après découpage en morceaux pour obtenir des nombres pas trop grands).

La destinataire Alice choisit deux « grands » nombres premiers p et q, et calcule le produit N=pq. Elle rend N public et surtout garde pour elle les valeurs de p et q. Elle choisit ensuite un entier e premier avec (p-1)(q-1) et le donne à tout le monde : (N,e) sera la clé publique. Elle choisit en général e ayant peu de termes dans sa décomposition en binaire, pour que le cryptage ne demande pas trop longtemps.

Comme Alice est la seule à connaître p et q, elle est également la seule à pouvoir calculer (p-1)(q-1), et donc à déterminer un entier de Bézout d tel que de $de \equiv 1 \ [(p-1)(q-1)]$. d sera la clé de décodage, que l'on conserve bien sûr très secrète.

Le principe de la méthode est alors le suivant. Bob, qui veut envoyer un message M à Alice calcule $M' \equiv M^e$ [N] et envoie M' à Alice. Celle-ci calcule ensuite $M'' \equiv M'^d$ [N].

Montrer que M et M'' sont égaux modulo N, et donc que Alice peut décoder le message de Bob pourvu que M soit inférieur à N.

On note $((\mathbb{Z}/17\mathbb{Z})^{\times}, \times)$ le groupe des inversibles de l'anneau $(\mathbb{Z}/17\mathbb{Z}, +, \times)$. Montrer qu'il est cyclique (en cherchant, tout simplement, un générateur de ce groupe). Puis donner tous les générateurs de $((\mathbb{Z}/17\mathbb{Z})^{\times}, \times)$.

On peut montrer que, si p est premier, $((\mathbb{Z}/p\mathbb{Z})^{\times}, \times)$ est cyclique. Ce n'est pas au programme. Ses éléments générateurs sont dit primitifs. On peut montrer qu'il y en a exactement $\varphi(p-1)$.

Quels sont les sous-groupes finis de (\mathbb{C}^*, \times) ?

Déterminer tous les morphismes de groupes de $(\mathbb{Z}/n\mathbb{Z},+)$ dans (\mathbb{C}^*,\times) .

$$orall i,j \in \llbracket 1,n
rbracket, \ a_{i,j} = \sum_{k|i ext{ et } k|j} \psi(k)$$

Le but de l'exercice est de calculer det A à l'aide de ψ .

1. On introduit la matrice $B=(b_{i,j})_{1\leqslant i,j\leqslant n}\in\mathcal{M}_n(\mathbb{C})$ où $b_{i,j}=\delta_{i|j}=\begin{cases} 1 & \text{si }i|j,\\ 0 & \text{sinon.} \end{cases}$

1.a) Montrer que $A = B^{\mathsf{T}}DB$ où D est diagonale dont les cœfficients sont à préciser.

1.b) Justifier and A = 1.

1.c) Exprimer det A en fonction de ψ .

2. Applications.

que

2.a) Calculer $\det A$ lorsque $a_{i,j}$ est le nombre de diviseurs communs à i et j. On pourra conjecturer le résultat avec un logiciel de calcul numérique ou formel.

^{7.} Rivest, Shamir et Adleman, 1979

- **2.b)** Calculer $\det A$ lorsque $a_{i,j}$ est la somme des diviseurs communs à i et j. On pourra conjecturer le résultat avec un logiciel de calcul numérique ou formel.
- **3.** On souhaite calculer le déterminant de Smith : $\det A$ lorsque $a_{i,j}=i \wedge j$ est le plus grand diviseur commun à i et j.
- **3.a)** Pour $k\geqslant 2$, on appelle $\varphi(k)$ le nombre d'entiers ℓ tels que $0\leqslant \ell\leqslant k-1$ et $k\wedge \ell=1$, et on pose $\varphi(1)=1$. La fonction φ de \mathbb{N}^* dans \mathbb{N} ainsi définie est appelée *indicatrice* d'Euler.
 - (i) Soient $m\in\mathbb{N}^*$ et $k\in\mathbb{N}$ un diviseur de m. Parmi tous les nombres rationnels de la forme $\frac{q}{m}$ où $1\leqslant q\leqslant m$, combien y en a-t-il qui s'écrivent sous forme irréductible avec k au dénominateur ?
 - (ii) Montrer que, si $m\in\mathbb{N}^*$, $m=\sum_{k|m}\varphi(k).$
- **3.b)** En déduire det A en fonction de φ .