Endomorphismes d'un espace euclidien

Exercices vus en cours

 $oxed{1}$ On considère deux réels a et b tels que a < b.

On note w est une fonction continue strictement positive intégrable sur [a,b]. Munissons $\mathcal{C}([a,b],\mathbb{R})$ du produit scalaire $(f|g)=\int_a^b w(t)f(t)g(t)\ dt$

Montrer que la famille $(\check{t} \overset{\circ}{\mapsto} t^n)_{n \in \mathbb{N}}$ est totale.

Plus généralement, montrer que toute famille $(e_n)_{n\in\mathbb{N}}$ de fonctions polynômes vérifiant, pour tout n, $\deg(e_n)=n$, est totale.

Solution de 1:

La clé est ici le théorème de Weierstrass. On commence par comparer la norme $\|.\|$ associée au produit scalaire et la norme N_{∞} de la convergence uniforme : notant $E = \mathcal{C}([a,b],\mathbb{R})$,

$$\forall f \in E \qquad ||f|| \leqslant kN_{\infty}$$

avec $k=\sqrt{\int_a^b w}$. Il y a par théorème de Weierstrass une suite (P_n) d'éléments de Vect $((e_n)_{n\in\mathbb{N}})$ qui converge vers f pour N_∞ . A fortiori il y a convergence pour $\|.\|$.

2 Égalité de Bessel-Parseval Si $(e_n)_{n\in\mathbb{N}}$ est orthonormale dans l'espace préhilbertien réel $(E,\langle.\rangle)$,

 $\text{montrer que } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 \leqslant \|x\|^2 \text{ puis que } (e_n)_{n \in \mathbb{N}} \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ puis que } (e_n)_{n \in \mathbb{N}} \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ puis que } (e_n)_{n \in \mathbb{N}} \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ puis que } (e_n)_{n \in \mathbb{N}} \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si } \forall x \in E, \quad \sum_{n=0}^{+\infty} \langle e_n, x \rangle^2 = \|x\|^2 \text{ est totale si et seulement si }$

Solution de 2 : Égalité de Bessel-Parseval

L'inégalité a été vue (inégalité de Bessel). L'équivalence vient de la simple remarque suivante (voir chapitre sur la projection orthogonale sur un sev de dimension finie) :

$$||x - p_n(x)||^2 = ||x||^2 - ||p_n(x)||^2 = ||x||^2 - \sum_{k=0}^n (e_k|x)^2$$

et de la proposition précédente.

 $oxed{3}$ Si $(e_n)_{n\in\mathbb{N}}$ est totale, si $F=\operatorname{Vect}(e_n)_{n\in\mathbb{N}}$, montrer que $F^\perp=\{0_E\}$.

Solution de 3:

Il suffit de dire que, si $x \in F^{\perp}$, alors $p_n(x) = 0_E$ pour tout x. Or la suite $(p_n(x))$ converge vers x...

5 Trèèèès classique Montrer que $\mathcal{O}(n) = \{M \in \mathcal{M}_n(\mathbb{R}), M^{\mathsf{T}}M = I_n\}$ est compact.

Solution de 5 : Trèèèèès classique

On est en dimension finie, il suffit de montrer que $\mathcal{O}(n)$ est fermée et bornée pour n'importe quelle norme.

Or $\mathcal{O}(n)$ est fermée comme image réciproque du fermé $\{I_n\}$ par l'application continue $M\mapsto M^\intercal M$ (bilinéarité du produit matriciel et linéarité de la transposition) et bornée car, avec la norme euclidienne $\|M\|^2=\operatorname{tr}(M^\intercal M)$, on a $\mathcal{O}(n)\subset \overline{B}(0,\sqrt{n})$.

Étudier l'endomorphisme canoniquement associé à $M=\begin{pmatrix} \sqrt{2}/2 & \sqrt{3}/3 & -\sqrt{6}/6 \\ 0 & \sqrt{3}/3 & \sqrt{6}/3 \\ \sqrt{2}/2 & -\sqrt{3}/3 & \sqrt{6}/6 \end{pmatrix}$.

Solution de 6:

$$\begin{split} (C_1|C_2) &= \sqrt{2}/2\sqrt{3}/3 - \sqrt{2}/2\sqrt{3}/3 = 0. \\ (C_2|C_3) &= -\sqrt{3}/3\sqrt{6}/6 + \sqrt{3}/3\sqrt{6}/3 - \sqrt{3}/3\sqrt{6}/6 = 0. \\ (C_1|C_3) &= -\sqrt{2}/2\sqrt{6}/6 + \sqrt{2}/2\sqrt{6}/6 = 0. \\ \|C_1\|^2 &= \left(\sqrt{2}/2\right)^2 + \left(\sqrt{2}/2\right)^2 = 1/2 + 1/2 = 1. \\ \|C_2\|^2 &= \left(\sqrt{3}/3\right)^2 + \left(\sqrt{3}/3\right)^2 + \left(\sqrt{3}/3\right)^2 = 1/3 + 1/3 + 1/3 = 1. \\ \|C_3\|^2 &= \left(\sqrt{6}/6\right)^2 + \left(\sqrt{6}/3\right)^2 + \left(\sqrt{6}/6\right)^2 = 1/6 + 4/6 + 1/6 = 1. \\ \mathrm{Donc} \ M \in \mathcal{O}(3). \end{split}$$

CCINP 68 Soit la matrice $A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}$.

- 1. Démontrer que A est diagonalisable de quatre manières :
 - (a) sans calcul,
 - (b) en calculant directement le déterminant $\det(\lambda l_3 A)$, où l_3 est la matrice identité d'ordre 3, et en déterminant les sous-espaces propres,
 - (c) en utilisant le rang de la matrice,
 - (d) en calculant A^2 .
- 2. On suppose que A est la matrice d'un endomorphisme u d'un espace euclidien dans une base orthonormée.

Trouver une base orthonormée dans laquelle la matrice de u est diagonale.

Solution de 7 : CCINP 68

- 1. (a) La matrice A est symétrique réelle donc diagonalisable dans une base orthonormée de vecteurs propres.
 - (b) On obtient $\det(\lambda I_3 A) = \lambda^2(\lambda 3)$.

$$E_3(A) = \operatorname{Vect}\left(egin{pmatrix}1\\-1\\1\end{pmatrix}
ight)$$
 et $E_0(A): x-y+z=0.$

Donc A est diagonalisable car dim $E_3(A)$ + dim $E_0(A) = 3$.

(c) rgA = 1 donc $dim E_0(A) = 2$.

On en déduit que 0 est valeur propre au moins double de la matrice ${\cal A}.$

Puisque ${\rm tr}A=3$ et que ${\rm tr}A$ est la somme des valeurs propres complexes de A comptées avec leur multiplicité, la matrice A admet une troisième valeur propre qui vaut 3 et qui est nécessairement simple.

Comme dans la question précédente, on peut conclure que A est diagonalisable car $\dim E_3(A) + \dim E_0(A) = 3$.

- (d) On obtient $A^2 = 3A$ donc A est diagonalisable car cette matrice annule le polynôme $X^2 - 3X$ qui est scindé à racines simples.
- 2. On note $e = (\vec{u}, \vec{v}, \vec{w})$ la base canonique de \mathbb{R}^3 .

On note (|) le produit scalaire canonique sur \mathbb{R}^3 .

Soit f l'endomorphisme canoniquement associé à A.

A est symétrique réelle et e est une base orthonormée, donc f est un endomorphisme symétrique et, d'après le théorème spectral, f est diagonalisable dans une base orthonormée de vecteurs propres.

On sait également que les sous-espaces propres sont orthogonaux donc il suffit de trouver une base orthonormée de chaque sous-espace propre pour construire une base orthonormée de vecteurs propres.

$$E_3(f) = \text{Vect}(1, -1, 1) \text{ et } E_0(f) : x - y + z = 0.$$

Donc $\vec{u} = \frac{1}{\sqrt{3}}(\vec{i} - \vec{j} + \vec{k})$ est une base orthonormée de $E_3(f)$.

 $ec{i}+ec{j}$ et $ec{i}-ec{j}-2ec{k}$ sont deux vecteurs orthogonaux de $E_0(f)$. On les normalise et on pose $ec{v}=rac{1}{\sqrt{2}}(ec{i}+ec{j})$ et $ec{w}=rac{1}{\sqrt{6}}\left(ec{i}-ec{j}-2ec{k}
ight)$.

Alors (\vec{v}, \vec{w}) une base orthonormée de $E_0(f)$.

On en déduit que $(\vec{u}, \vec{v}, \vec{w})$ est une base orthonormée de vecteurs propres de f.

On dit que A est **positive** lorsque $\operatorname{Sp} A \subset \mathbb{R}^+$ et on note $A \in \mathcal{S}_n^+(\mathbb{R})$. On dit que A est **définie positive** lorsque $\operatorname{Sp} A \subset \mathbb{R}_*^+$ et on note $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

- 1. Montrer que $A \in \mathcal{S}_n^+(\mathbb{R})$ (respectivement $A \in \mathcal{S}_n^{++}(\mathbb{R})$) si et seulement si $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\}, \ X^{\mathsf{T}}AX \geqslant 0 \ \text{(respectivement} > 0\text{)}.$
- 2. Montrer que si $A \in \mathcal{S}_n^+(\mathbb{R})$, il existe $M \in \mathcal{M}_n(\mathbb{R})$ telle que $A = M^\intercal M$.
- 3. Racine carrée : Si A est symétrique positive, montrer qu'il existe B symétrique positive telle que $B^2 = A$.

Que dire de B si A est supposée définie positive?

4. **Décomposition polaire** : Soit $A \in \mathcal{GL}_n(\mathbb{R})$. Montrer que $A^{\mathsf{T}}A$ est une matrice symétrique définie positive puis qu'il existe $(Q, S) \in \mathcal{O}(n) \times \mathcal{S}_n^{++}(\mathbb{R})$ telles que A = QS.

Remarque : la densité de $\mathcal{GL}_n(\mathbb{R})$ dans $\mathcal{M}_n(\mathbb{R})$ et la compacité de $\mathcal{O}(n)$ (à savoir montrer...) permet d'étendre ce résultat à toute matrice carrée réelle.

Solution de 8 : Matrice symétrique positive ou définie positive

1. Soit $M \in \mathcal{S}_n(\mathbb{R})$. Par théorème spectral, il existe $P \in \mathcal{O}_n(\mathbb{R})$ et D diagonale dans $\mathcal{M}_n(\mathbb{R})$ telles que

$$M = PDP^{-1} = PDP^{T}$$

Alors

$$\forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \qquad X^T \ M \ X \geqslant 0 \Leftrightarrow \forall X \in \mathcal{M}_{n,1}(\mathbb{R}) \qquad X^T \ PDP^T \ X \geqslant 0$$
$$\Leftrightarrow \forall Y \in \mathcal{M}_{n,1}(\mathbb{R}) \qquad Y^T DY \geqslant 0$$

car l'application $X \mapsto P^T X$ est une bijection de $\mathcal{M}_{n,1}(\mathbb{R})$ dans lui-même (un automorphisme, même), de réciproque $Y \mapsto PY$. Or, avec des notations « évidentes »,

$$Y^T D Y = \sum_{i=1}^n d_i y_i^2$$

et $Sp(M) = \{d_i ; 1 \le i \le n\}$. Si tous les d_i sont positifs, alors $\forall Y \in \mathcal{M}_{n,1}(\mathbb{R})$ $Y^TDY \ge 0$, et réciproquement, en prenant les Y dans la base canonique de $\mathcal{M}_{n,1}(\mathbb{R})$.

Pour la défini-positivité, c'est quasiment la même preuve que pour la caractérisation de la positivité, quelques inégalités strictes à la place d'inégalités larges, seulement.

- 2. $M = \Delta P^{\mathsf{T}}$ où Δ comme ci-dessous convient.
- 3. Racine carrée : Par théorème spectral, il existe $P \in \mathcal{O}(n)$ et $D \in \mathcal{D}_n(\mathbb{R})$ (i.e. diagonale) telles que

$$A = PDP^{T} = PDP^{-1}$$

Et $D=\operatorname{diag}(\lambda_1,\ldots,\lambda_n)$ (notation non officielle...) où les λ_i sont les valeurs propres $\operatorname{de} D$, donc $\operatorname{de} A$. Donc les λ_i sont positifs, et, en posant $\Delta=\operatorname{diag}(\sqrt{\lambda_1},\ldots,\sqrt{\lambda_n})$ et $B=P\Delta P^{-1}=P\Delta P^T$ on obtient une matrice symétrique (deuxième forme) et à valeurs propres positives (première forme) telle que $B^2=A$.

Si A est définie positive, elle est dans $GL_n(\mathbb{R})$ (elle n'a pas 0 pour valeur propre), donc B aussi (prendre le déterminant, ou encore dire que $A^{-1}BB=I_n$), donc B, étant déjà positive, est définie positive.

4. **Décomposition polaire**: $A^{T}A$ est assez facilement une matrice symétrique. Et, si $X \in \mathcal{M}_{n,1}(\mathbb{R})$,

$$X^{\mathsf{T}}(A^{\mathsf{T}}A)X = Y^{\mathsf{T}}Y$$
 où $Y = AX$

Or, si $X \neq (0)$, $AX \neq (0)$, or si $Y \neq (0)$, $Y^{T}Y > 0$.

En utilisant les questions précédentes, il existe S symétrique définie positive telle que

$$S^2 = A^T A$$

Posons $Q = AS^{-1}$; on calcule

$$Q^T Q = (S^{-1})^T A^T A S^{-1} = S^{-1} S^2 S^{-1} = I_n$$

Donc Q est orthogonale.

Questions bonus:

1. Montrer que l'ensemble des matrices symétriques positives est fermé dans $\mathcal{M}_n(\mathbb{R})$.

Si $X \in \mathcal{M}_{n,1}(\mathbb{R})$, $\phi_X : M \mapsto X^T M X$ est continue car linéaire avec un espace de départ $(\mathcal{M}_n(\mathbb{R}))$ de dimension finie. De même $\psi : M \mapsto M - M^T$. Or l'ensemble des matrices positives est

$$\psi^{-1}(\{(0)\}) \cap \bigcap_{X \in \mathcal{M}_{n,1}(\mathbb{R})} \phi_X^{-1}(\{0\})$$

et une intersection de fermés est un fermé.

On peut aussi utiliser la caractérisation des fermés par les suites.

2. Montrer que $GL_n(\mathbb{R})$ est dense dans $\mathcal{M}_n(\mathbb{R})$.

Si $M \in \mathcal{M}_n(\mathbb{R})$,

$$M - \frac{1}{p}I_n \xrightarrow[p \to +\infty]{} M$$

Or, au moins à partir d'un certain rang, $1/p \notin Sp(M)$.

3. Montrer que O(n) est compact.

Fermé et borné...n'oublions surtout pas : d'un espace vectoriel de dimension finie.

4. Soit $A \in M_n(\mathbb{R})$. Démontrer qu'il existe un couple (Q, S) de matrices, la première orthogonale et la seconde symétrique positive, telles que A = QS.

Soit (A_p) une suite d'éléments de $GL_n(\mathbb{R})$ qui converge vers A. Pour tout $p \in \mathbb{N}$, il existe Q_p orthogonale et S_p symétrique positive telles que

$$A_p = Q_p S_p$$

On extrait de (Q_p) , par compacité, une suite $\left(Q_{\phi(p)}\right)$ qui converge vers Q orthogonale. Et en écrivant

$$S_{\phi(p)} = Q_{\phi(p)}^T A_{\phi(p)}$$

On voit que la suite $\left(S_{\phi(p)}\right)$ converge vers Q^TA . Par **3.**, $Q^TA=S$ est symétrique positive. Ce qui conclut.

Formules variationnelles Soit u un endomorphisme symétrique d'un espace vectoriel eucli-

dien E. Montrer que l'application $x \mapsto \frac{(x|u(x))}{\|x\|^2}$ atteint sur $E \setminus \{0_E\}$ un minimum et un maximum, les exprimer en fonction des valeurs propres de u.

Traduire ce résultat matriciellement.

Solution de 9 : Formules variationnelles

Par théorème spectral, on fixe une base orthonormale (e_1,\ldots,e_n) de E composée de vecteurs propres de u: $u(e_i)=\lambda_i$. Il n'est pas restrictif de supposer $\lambda_1\leqslant\ldots\leqslant\lambda_n$. Et alors, si $x=x_1e_1+\cdots+x_ne_n$, on a

$$(x|u(x)) = \sum_{i=1}^{n} \lambda_i x_i^2$$

donc

$$\lambda_1 ||x||^2 \leqslant (x|u(x)) \leqslant \lambda_n ||x||^2$$

l'inégalité de gauche est une égalité si et seulement si $x \in \operatorname{Ker}(u - \lambda_1 \operatorname{Id}_E)$, l'inégalité de droite est une égalité si et seulement si $x \in \operatorname{Ker}(u - \lambda_n \operatorname{Id}_E)$. Donc il y a un minimum et un maximum, qui sont $\operatorname{Min}(\operatorname{Sp}(A))$ et $\operatorname{Max}(\operatorname{Sp}(A))$. Pour les matrices symétriques réelles, même chose en considérant le quotient

$$\frac{X^T A X}{X^T X}$$

X parcourant $\mathcal{M}_{n,1}(\mathbb{R})\setminus\{0\}$.

Déterminer la matrice dans la base canonique de \mathbb{R}^3 munit de sa structure euclidienne canonique et de son orientation habituelle de la rotation d'axe D: x=y=z et d'angle de mesure $\theta=\frac{2\pi}{3}$.

Solution de 10:

Déterminer la matrice dans la base canonique de \mathbb{R}^3 munit de sa structure euclidienne canonique et de son orientation habituelle de la rotation d'axe D: x=y=z et d'angle de mesure $\theta=\frac{2\pi}{3}$.

11

Étudier l'endomorphisme canoniquement associé à $M=-\frac{1}{9}\begin{pmatrix} 7 & 4 & 4 \\ -4 & 8 & -1 \\ 4 & 1 & -8 \end{pmatrix}$.

Solution de 11:

Les colonnes sont orthonormés $C_1 \wedge C_2 = +C_3$ avec la première coordonnée : c'est une matrice de rotation.

On calcule les vecteurs invariants, on trouve $\begin{pmatrix} 1 \\ 0 \\ -4 \end{pmatrix}$ donc a = (1, 0, -4) dirige et oriente l'axe de la rotation.

Puis $\operatorname{tr} M = -7/9 = 2 \cos \theta + 1 \operatorname{donc} \cos \theta = -8/9$.

Et le signe de
$$\sin\theta$$
 est celui de $\begin{vmatrix} 1 & -7 & 1 \\ 0 & 4 & 0 \\ 0 & -4 & -4 \end{vmatrix} < 0.$

Donc rotation d'angle – Arccos(-8/9).

Autres exercices

Soit $f \in \mathcal{L}(E)$ où E euclidien. Montrer que les propriétés suivantes sont équivalentes :

- 1. f est une symétrie orthogonale.
- 2. f est une isométrie et est symétrique (ie $f \in \mathcal{O}(E) \cap \mathcal{S}(E)$.)
- 3. f est une symétrie et une isométrie.
- 4. f est une symétrie et est symétrique.

Donner une traduction matricielle.

Soit $n \in \mathbb{N}^*$, $A \in \mathcal{M}_n(\mathbb{R})$. Démontrer que $\operatorname{Ker}(A^{\mathsf{T}}A) = \operatorname{Ker} A$ et $\operatorname{rg}(A^{\mathsf{T}}A) = \operatorname{rg} A$.

14

Linéarité automatique

- 1. Montrer qu'une application de E euclidien dans lui-même qui conserve le produit scalaire est automatiquement linéaire (et donc une isométrie de E).
- **2.** Même question si $u(0_E)=0_E$ et u conserve la distance euclidienne entre deux vecteurs (donc en particulier la norme).
- **3.** Vérifier que plus généralement, si u conserve la distance euclidienne, il existe un vecteur $a \in E$ et une application $v \in \mathcal{L}(E)$ tels que pour tout x, u(x) = a + v(x) (on dit que u est une application affine).
- **4.** Montrer que si e est un vecteur de norme 1, $u: x \mapsto \|x\| e$ conserve la norme sans être linéaire.

Solution de 14 : Linéarité automatique

Si u conserve le produit scalaire (donc la norme) :

$$||u(x + \lambda y) - u(x) - \lambda u(y)||^{2} = ||u(x + \lambda y)||^{2} + ||u(x)||^{2} + \lambda^{2} ||u(y)||^{2} - 2(u(x + \lambda y)|u(x)) - 2\lambda(u(x + \lambda y)|u(y)) + 2\lambda(u(x)|u(y)) = 0.$$

Si u conserve les distances, comme

$$(u(x)|u(y)) = \frac{1}{2} \left(\|u(x)\|^2 + \|u(y)\|^2 - \|u(x) - u(y)\|^2 \right),$$

u conserve le produit scalaire.

15 Soit
$$A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{O}(n)$$
.

- 1. En utilisant le vecteur $u \in \mathbb{R}^{n^2}$ qui ne contient que des 1, montrer que $\sum_{1 \leqslant i,j \leqslant n} |a_{i,j}| \leqslant n\sqrt{n}$.
- **2.** Montrer ensuite que $\left|\sum_{1\leqslant i,j\leqslant n}a_{i,j}\right|\leqslant n$ en utilisant $U=\begin{pmatrix}1\\\vdots\\i\end{pmatrix}\in\mathcal{M}_{n,1}(\mathbb{R})$ et l'endomorphisme f de \mathbb{R}^n canoniquement associé à A. Cas d'égalité ?

Solution de 15:

1.

2. Savoir que AU est une matrice colonne dont les coefficients sont les sommes des coefficients de chaque ligne de A aide à trouver

$$U^{\intercal} A U = \sum_{i,j} a_{i,j}$$

Mais considérons le produit scalaire canonique sur $\mathcal{M}_{n,1}(\mathbb{R})$; on peut alors interpréter

$$^{\mathsf{T}}U\ A\ U = \langle U, AU \rangle$$

Et l'inégalité de Cauchy-Schwarz donne

$$|\langle U, AU \rangle| \leqslant ||U|| ||AU||$$

Mais A, orthogonale, conserve la norme euclidienne. Comme $\|U\|=\sqrt{n}$, l'inégalité est démontrée (assez facile avec l'indication, mais sans ladite indication ce le serait nettement moins). L'égalité dans Cauchy-Schwarz a lieu si et seulement si AU et U sont liés, soit si et seulement si $AU=\pm U$ (A conserve la norme). Soit si et seulement si la somme des coefficients de chaque ligne vaut 1 (respectivement -1).

- Reconnaître les endomorphismes dont les matrices dans une base orthonormée directe (i,j) d'un espace vectoriel euclidien orienté sont $M=\frac{1}{5}\begin{pmatrix}3&-4\\4&3\end{pmatrix}$ et $N=\frac{1}{5}\begin{pmatrix}3&4\\4&-3\end{pmatrix}$.
- $oxed{18}$ Reconnaître les endomorphismes dont la matrice dans une base orthonormée directe (i,j,k)

d'un espace vectoriel euclidien orienté est

$$A = -\frac{1}{9} \begin{pmatrix} 7 & 4 & 4 \\ -4 & 8 & -1 \\ 4 & 1 & -8 \end{pmatrix} \qquad B = \frac{1}{9} \begin{pmatrix} 1 & 4 & -8 \\ 4 & 7 & 4 \\ -8 & 4 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 0 & -1 & 0 \\ 0 & 0 & -1 \\ -1 & 0 & 0 \end{pmatrix}$$

$$D = \frac{1}{3} \begin{pmatrix} 2 & 2 & 1 \\ -2 & 1 & 2 \\ 1 & -2 & 2 \end{pmatrix} \qquad E = \frac{1}{3} \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix} \qquad F = \frac{1}{7} \begin{pmatrix} -2 & 6 & -3 \\ 6 & 3 & 2 \\ -3 & 2 & 6 \end{pmatrix}$$

Soit $A=rac{1}{7}egin{pmatrix} 6 & 3 & \cdot \\ -3 & 2 & \cdot \\ 2 & \cdot & \cdot \end{pmatrix}$ et $f\in\mathcal{L}(E)$ où E euclidien orienté de dimension 3 dont la matrice

dans la base orthonormale directe (i, j, k) est A.

Compléter la matrice pour que $A \in \mathcal{SO}(3)$ puis déterminer ses éléments caractéristiques.

- $\begin{tabular}{|c|c|c|c|} \hline \bf 20 & Soient $(a,b) \in \mathbb{R} \times \mathbb{R}_+^*$ et $A = \begin{pmatrix} a & b & b \\ b & a & b \\ b & b & a \\ \end{tabular}.$
 - 1. Trouver une CNS sur (a, b) pour que A soit orthogonale.
 - 2. Cette condition étant remplie, préciser la nature et les éléments caractéristiques de l'endomorphisme d'un espace vectoriel euclidien orienté dont la matrice dans une base orthonormée directe (i,j,k) est A.
- Soit E un espace vectoriel euclidien orienté, et $\mathcal{B}=(i,j,k)$ une base orthonormée directe de E. Former la matrice dans \mathcal{B} de la rotation R d'axe orienté par $w=\frac{1}{3}(2i-2j-k)$ et d'angle $\theta=\operatorname{Arccos}\left(\frac{4}{5}\right)$.
- Dans un espace euclidien orienté de dimension 3, on considère des rotations r et R. Étudier l'endomorphisme $f = r \circ R \circ r^{-1}$.

Dans quels cas r et R commutent-elles?

- **23 Écrit CCINP 2020 CCMP 2017** Soit E euclidien et f un endomorphisme non nul de E qui conserve l'orthogonalité.
 - 1. Montrer que si $\|x\| = \|y\|$, alors $\|f(x)\| = \|f(y)\|$.

Indication : faire un dessin, qui incite à s'intéresser à x-y et x+y.

- **2.** Montrer qu'il existe k > 0 tel que pour tout x de E, ||f(x)|| = k ||x||.
- ${f 3.}\,$ Montrer que f est la composée d'une isométrie et d'une homothétie.
- **24** Soit E euclidien, $u \in \mathcal{O}(E)$ et $v = u \mathrm{id}$.
 - **1.** Montrer que Im $v = (\operatorname{Ker} v)^{\perp}$.

2. Soit p projection orthogonale sur Ker v et pour tout $n \in \mathbb{N}^*$,

$$p_n = \frac{1}{n} (id + u + u^2 + \dots + u^{n-1}).$$

Démontrer que pour tout $x \in E$, $p_n(x) \xrightarrow[n \to +\infty]{} p(x)$.

Solution de 24:

1. Considérons $x \in \ker v$, $y \in \operatorname{im} v$. Il existe z tel que y = v(z). Et

$$(x|y) = (x|v(z)) = (x|z) - (x|u(z))$$

Mais x = u(x), donc (x|u(z)) = (u(x)|u(z)) et u conserve le produit scalaire; on conclut bien que

$$(x|y) = 0$$

Il en ressort que ker $v \perp$ im v. Donc ker $v \subset (\operatorname{im} v)^{\perp}$. L'égalité résulte alors de l'égalité des dimensions, elle-même conséquence du théorème du rang.

2. Soit $x \in E$, on peut écrire x = y + z où $y \in \operatorname{Ker} v$, c'est-à-dire y = u(y), et $z \in (\operatorname{Ker} v)^{\perp} = \operatorname{im}(v)$, ce qui signifie qu'il existe $t \in E$ tel que z = v(t) = t - u(t). On a alors

$$p_n(x) = \frac{1}{n} \sum_{k=0}^{n-1} u^k(y) + \frac{1}{n} \sum_{k=0}^{n-1} u^k(z)$$

Mais pour tout k on a $u^k(y)=y$ (récurrence sur k), et $u^k(z)=u^k(t)-u^{k+1}(t)$ ce qui fait que la deuxième somme est télescopique. Donc

$$p_n(x) = y + \frac{1}{n} \left(t - u^n(t) \right)$$

Mais par orthogonalité de u, on a $||u^n(t)|| = ||t||$, donc

$$p_n(x) \xrightarrow[n \to +\infty]{} y$$

ce qui conclut.

25

- 1. À quelle condition une rotation et une réflexion du plan euclidien orienté commutent-elles?
- 2. Étudier en général $s \circ r \circ s$ et $r \circ s \circ r$ où r est une rotation et s une réflexion.

26 Mines MP (sans l'indication)

Soit $M=\begin{pmatrix}A&B\\C&D\end{pmatrix}\in\mathcal{O}(n)$ où A et D sont carrées. En multipliant par une matrice triangulaire par blocs bien choisie, montrer que $(\det A)^2=(\det D)^2$.

27) Mines MP

 $\text{Soient } (a,b,c) \in \mathbb{R}^3 \text{, } \sigma = ab + bc + ca \text{, } S = a+b+c \text{ et la matrice } M = \begin{pmatrix} a & b & c \\ c & a & b \\ b & c & a \end{pmatrix}.$

- **1.** Donner une condition nécessaire sur σ et S pour que $M \in \mathcal{O}(3)$.
- **2.** Donner une condition nécessaire sur σ et S pour que $M \in \mathcal{SO}(3)$.
- **3.** Montrer que $M \in \mathcal{SO}(3)$ si et seulement si a, b et c sont racines de $X^3 X^2 + k$ avec $k \in [0, 4/27]$.

Solution de 27: Mines MP

- 1. $M \in \mathcal{O}(3) \iff \sigma = 0 \text{ et } S \in \{-1, 1\}.$
- **2.** $M \in \mathcal{SO}(3) \iff \sigma = 0$ et S = 1.
- 3. Étudier la fonction.
- **28** Déterminer toutes les matrices symétriques réelles vérifiant $A^4 = -A^2$.
- $oxed{29}$ On munit $\mathcal{M}_n(\mathbb{R})$ de son produit scalaire canonique.
 - 1. Montrer en utilisant l'inégalité de Cauchy-Schwarz que pour toutes $A, B \in \mathcal{M}_n(\mathbb{R})$, $||AB|| \leq ||A|| \, ||B||$.
 - 2. Si A est symétrique, écrire ||A|| en fonction des valeurs propres de A.
 - 3. Si $Q \in \mathcal{O}(n)$, calculer ||Q||.

Solution de 29:

1.

2. Par théorème spectral, il existe $P \in O(n)$ et $D \in D_n(\mathbb{R})$ telles que $A = PDP^{-1} = PDP^T$. Mais alors

$$||A||^2 = \operatorname{Tr}(A^T A) = \operatorname{Tr}(P D P^T P D P^T) = \operatorname{Tr}(D^2)$$

Notons $\lambda_1, \dots, \lambda_n$ les valeurs propres de A répétées autant que de fois que leur multiplicité. Alors

$$||A|| = \sqrt{\sum_{i=1}^{n} \lambda_i^2}$$

3.

$$||Q||^2 = \operatorname{Tr}(Q^T Q) = \operatorname{Tr}(I_n) = n$$

Donc $\|Q\|=\sqrt{n}.$ On retrouve que O(n) est borné. Même mieux, pour cette norme, O(n) est inclus dans une sphère.

- (30) Soit A nilpotente commutant avec sa transposée. Montrer que $A^{\intercal}A=0$ puis que A est nulle.
- **31** Adjoint Soit (E, (.|.)) un espace euclidien, \mathcal{B} une base orthonormale de E, u un endomorphisme de E. On note $A = \mathsf{Mat}_{\mathcal{B}}(u)$, et on note u^* l'endomorphisme de E tel que $\mathsf{Mat}_{\mathcal{B}}(u^*) = A^\mathsf{T}$.
 - 1. Montrer que u^* est l'unique endomorphisme de E tel que

$$\forall (x,y) \in E^2 \qquad (u(x)|y) = (x|u^*(y))$$

- 2. Déterminer le noyau et l'image de u^* en fonction du noyau et de l'image de u.
- 3. Si $u \in \mathcal{S}(E)$, que vaut u^* ?
- 4. Si $u \in \mathcal{O}(E)$, que vaut u^* ?
- 5. Montrer qu'un sous-espace vectoriel F est stable par u si et seulement si F^{\perp} est stable par u^* .

Solution de 31 : Adjoint

1. En effet, si on a un endomorphisme v,

```
\forall (x,y) \in E^2 \ (u(x)|y) = (x|v(y)) ssi pour tout X,Y \in \mathcal{M}_{n,1}(\mathbb{R}), X^\intercal A^\intercal Y = XBY où B matrice de v dans \mathcal{B} ssi pour tout X,Y \in \mathcal{M}_{n,1}(\mathbb{R}), X^\intercal (A^\intercal - B)Y = 0
```

ssi $B=A^\intercal$ en prenant pour X et Y les vecteurs de la base canonique ou en reconnaissant $(X|(A^\intercal-B)Y)...$

2. $y \in \operatorname{Ker} u^* \operatorname{ssi} u^*(y) \in E^\perp \operatorname{ssi} \operatorname{pour} \operatorname{tout} x \in E$, $(u(x)|y) = 0 \operatorname{ssi} y \in (\operatorname{Im} u)^\perp$.

En remarquant avec la définition que $(u^*)^* = u$, $\operatorname{Im} u^* = (\operatorname{Ker} u)^{\perp}$.

- 3. Si $u \in \mathcal{S}(E)$, $u^* = u$ par unicité.
- 4. Si $u \in \mathcal{O}(E)$, $u^* = u^{-1}$ vu en remarque dans le cours.
- 5. Si F est stable par u, et si $y \in F^{\perp}$, alors pour tout $x \in F$, $(u^*(y)|x) = (y|u(x)) = 0$ donc $u^*(y) \in F^{\perp}$. On en déduit l'autre implication avec $(u^*)^* = u$.

$oxed{32}$ Connexité par arcs de $\mathcal{SO}(n)$

- 1. Définir une application continue ϕ de [0,1] dans $\mathcal{SO}(2)$ telle que $\phi(0)=I_2$ et $\phi(1)=\begin{pmatrix}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{pmatrix}$.
- 2. On considère $M \in \mathcal{SO}(n)$ $(n \ge 2)$. En utilisant la réduction des isométries vectorielles, montrer que $\mathcal{SO}(n)$ est connexe par arcs.
- 3. Montrer que, si $M \in \mathcal{SO}(n)$ et $M' \in \mathcal{O}(n) \setminus \mathcal{SO}(n)$, il n'existe pas d'application ψ continue sur [0,1], à valeurs dans $\mathcal{O}(n)$, telle que $\psi(0) = M$ et $\psi(1) = M'$.