chapitreXXIII

Groupes cycliques et Algèbre modulaire

Révisions de MPSI : Arithmétique sur ${\mathbb Z}$

1 PGCD

Définition: PGCD

Soient $a, b \in \mathbb{Z}$.

 $I=(a)+(b)=a\mathbb{Z}+b\mathbb{Z}=\{au+bv,\ u,v\in\mathbb{Z}\}$ est un idéal non réduit de $(\mathbb{Z},+,\times)$ qui est un anneau principal. Son unique générateur positif est appelé **pgcd** de a et b, noté $a \wedge b$.

On a donc, par définition, $a\mathbb{Z} + b\mathbb{Z} = (a \wedge b)\mathbb{Z}$.

Propriété : Relation de Bézout

Si $a,b\in\mathbb{Z}$, on peut trouver $a,b\in\mathbb{Z}$ tels que $au+bv=a\wedge b$.

Propriété: Propriété d'Euclide

Si $a, b, q \in \mathbb{Z}$, $a \wedge b = (a - bq) \wedge b$ (pas nécessairement une division euclidienne).

Propriété: Caractérisation

Soit $(a,b) \in \mathbb{Z}^2$.

$$d = a \wedge b \Longleftrightarrow \begin{cases} d \in \mathbb{N} \\ d | a \text{ et } d | b \end{cases}$$
$$\forall c \in \mathbb{Z}, (c | a \text{ et } c | b) \Longrightarrow c | d$$

Il s'agit donc du plus grand diviseur positif au sens de la division.

Définition : Nombre entiers premiers

 $a,b \in \mathbb{K}[X]$ sont dits **premiers entre eux** lorsque $A \wedge B = 1$, c'est-à-dire lorsque les seuls diviseurs communs sont les polynômes constants non nuls.

Théorème : de Bézout

Soit $a, b \in \mathbb{Z}$.

 $a \wedge b = 1 \iff \exists u, v \in \mathbb{Z}, \quad au + bv = 1$

Corollaire

Soient $a, b, c \in \mathbb{Z}$.

- (i) $a \wedge bc = 1 \iff a \wedge b = a \wedge c = 1$
- (ii) Si $d = a \wedge b$, on a $a', b' \in \mathbb{Z}$ tels que a = da', b = db' et $a' \wedge b' = 1$.

Théorème : Lemme de Gauß

Soient $a, b, c \in \mathbb{Z}$. Si $a \mid bc$ et $a \land b = 1$, alors $a \mid c$.

2 PPCM

Définition: PPCM

Le PPCM de deux entiers a,b est l'unique générateur positif $a \lor b$ de l'idéal $a \mathbb{Z} \cap b \mathbb{Z}$ des multiples communs à a et à b.

On a donc $a\mathbb{Z} \cap b\mathbb{Z} = (a \vee b)\mathbb{Z}$.

Propriété

- (i) Il s'agit du plus petit multiple positif commun à a et à b au sens de la division.
- (ii) On a toujours que $|ab| = (a \wedge b)(a \vee b)$.

3 Nombres premiers

Définition: Nombre premier

Un **nombre premier** est un entier naturel $p \ge 2$ dont les seuls diviseurs positifs sont 1 et p.

On notera \mathcal{P} l'ensemble des nombres premiers.

Propriété

L'ensemble des nombres premiers est infini.

Propriété

Si $p \in \mathcal{P}$ et $n \in \mathbb{Z}$, alors $p \mid n$ ou (exclusif) $p \wedge n = 1$.

Propriété

Soient $p \in \mathcal{P}$ et $a_1, ..., a_n \in \mathbb{Z}$.

 $p|(a_1 \times \cdots \times a_n)$ si et seulement si p divise l'un des a_k .

Théorème : fondamental de l'arithmétique – Décomposition primaire

Soit $n \in \mathbb{Z}^*$. On peut trouver $k \in \mathbb{N}$, $p_1, ..., p_k$ premiers deux à deux distincts, $\alpha_1, ..., \alpha_k \in \mathbb{N}^*$ tels que

$$n = \pm p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_k^{\alpha_k}$$

appelée décomposition primaire de n. De plus, cette écriture est unique à l'ordre des facteurs près.

 $p_1, ..., p_k$ sont les diviseurs premiers de n.

Définition

Soit $p \in \mathcal{P}$ et $n \in \mathbb{Z}^*$. On appelle **valuation** p-adique de n l'entier

 $v_p(n) = \max \{i \in \mathbb{N} \mid p^i \text{ divise } n\}.$

Propriété

Soient $n, m \in \mathbb{Z}^*$, $p \in \mathcal{P}$.

- (i) $v_p(n) \neq 0 \iff p|n$
- (ii) $v_p(n \times m) = v_p(n) + v_p(m)$
- (iii) $n|m \Longleftrightarrow \forall p \in \mathcal{P}, v_p(n) \leqslant v_p(m)$
- (iv) $v_p(n \land m) = \min(v_p(n), v_p(m))$ $v_p(n \lor m) = \max(v_p(n), v_p(m))$

4 Congruences

Définition: Congruence

Soit $n \in \mathbb{N}^*$. On dit que $a,b \in \mathbb{Z}$ sont **congrus modulo** n et on note $a \equiv b$ [n] lorsque n | (a - b) ie lorsqu'il existe $k \in \mathbb{Z}$ tel que a = b + kn.

Propriété

C'est une relation d'équivalence sur Z.

Propriété

 $\forall a \in \mathbb{Z}, \exists ! r \in [0, n-1] \mid a \equiv r \ [n]. \ r \ \text{est le reste de } la \ \text{division euclidienne de } k \ \text{par } n.$

Ainsi, la relation d'équivalence $\cdot \equiv \cdot [n]$ possède exactement n classes d'équivalences.

Propriété: Compatibilité de + et ×

Soient $n \in \mathbb{N}^*$ et $a,b,c,d \in \mathbb{Z}$ tels que $a \equiv b$ [n] et $c \equiv d$ [n]. Alors $a+c \equiv b+d$ [n] et $a \times c \equiv b \times d$ [n]. Plus généralement, si $m \in \mathbb{N}$, $a^m \equiv b^m$ [n].

$oxed{\mathsf{II}}_{\mathsf{Le}\;\mathsf{groupe}\;\mathbb{Z}/n\mathbb{Z}}$

Soit $n \in \mathbb{N}$ tel que $n \geqslant 1$ fixé.

Définition: $\mathbb{Z}/n\mathbb{Z}$

On note $\mathbb{Z}/n\mathbb{Z}$ l'ensemble (quotient) des n classes d'équivalences de $\cdot \equiv \cdot [n]$, notées $\overline{0},\overline{1},\ldots,\overline{n-1}$. Ainsi

$$\mathbb{Z}/n\mathbb{Z} = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}.$$

Définition: Surjection canonique

L'application surjective $\begin{bmatrix} \mathbb{Z} & \longrightarrow & \mathbb{Z}/n\mathbb{Z} \\ k & \longmapsto & \overline{k} \end{bmatrix}$ est ap-

pelée surjection canonique.

Lemme

Soient $a,b,c,d \in \mathbb{Z}$ tels que $\overline{a} = \overline{c}$ et $\overline{b} = \overline{d}$. Alors $\overline{a+b} = \overline{c+d}$

Définition

Si $a, b \in \mathbb{Z}$, on pose $\overline{a} + \overline{b} = \overline{a+b}$, ce qui définit une loi de composition interne + sur $\mathbb{Z}/n\mathbb{Z}$.

Propriété

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe commutatif isomorphe à $(\mathbb{U}_n,\times).$

III Groupes monogènes

1 Sous-groupe engendré par une partie

Définition : Groupe engendré par une partie

Soit (G, *) un groupe, A partie non vide de G. On appelle **sous-groupe engendré par** A le p

On appelle **sous-groupe engendré par** A le plus petit (au sens de l'inclusion) sous-groupe de G contenant A, noté $\langle A \rangle$.

On dit alors que A est une **partie génératrice** de $\langle A \rangle$.

Propriété

Les éléments de $\langle A \rangle$ sont exactement les produits (pour x) d'éléments de A ou de A^{-1} .

Autrement dit, $x \in \langle A \rangle$ si et seulement s'il existe $k \in \mathbb{N}$, $(a_1, \ldots, a_k) \in A^k$ et $(\varepsilon_1, \ldots, \varepsilon_k) \in \{-1, 1\}^k$ tel que $x = a_1^{\varepsilon_1} * \cdots * a_k^{\varepsilon_k}$.

2 Groupes monogènes et cycliques

Propriété

Soit $a \in G$. Le sous-groupe engendré par a noté $\langle a \rangle$ plutôt que $\langle \{a\} \rangle$ est

$$\langle a \rangle = \left\{ a^k, \ k \in \mathbb{Z} \right\}$$

On dit que a en est un **générateur**.

Définition : Groupe monogène

Un groupe G est dit **monogène** s'il est engendré par un seul élément, c'est-à-dire s'il existe $a \in G$ tel que $G = \langle a \rangle$.

Un groupe G est dite **cyclique** si et seulement s'il est monogène et fini.

Propriété

 $(\mathbb{Z}/n\mathbb{Z},+)$ est un groupe cyclique, dont les générateurs sont exactement les \overline{k} avec $k \wedge n = 1$.

3 Ordre d'un élément dans un groupe

(G,*) est un groupe d'élément neutre e.

Définition : Ordre d'un élément

On dit que $a \in G$ est **d'ordre fini** s'il existe $k \in \mathbb{N}^*$ tel que $a^k = e$.

Dans ce cas, on appelle **ordre de** a le plus petit $k \in \mathbb{N}^*$ tel que $a^k = e$.

Propriété

Soit a un élément de G d'ordre fini m.

- Si $k \in \mathbb{Z}$, $a^k = e$ si et seulement si $k \in m\mathbb{Z}$ ie m divise k.
- $\langle a \rangle = \left\{ a^k, k \in [0, m-1] \right\} \text{ et } |\langle a \rangle| = m.$

Propri<u>été</u>

Tout groupe monogène infini est isomorphe à $(\mathbb{Z},+)$.

Tout groupe monogène fini (donc cyclique) de cardinal n est isomorphe à $(\mathbb{Z}/n\mathbb{Z},+)$

Théorème : de Lagrange (HP)

Soit (G,*) un groupe fini, H un sous-groupe de G. Alors |H| divise |G|.

Propriété

Soit (G, *) un groupe fini de neutre e.

- (i) Tout élément de G est d'ordre fini.
- (ii) L'ordre de tout élément de G divise le cardinal de G.
- (iii) Pour tout $a \in G$, $a^{|G|} = e$.

$oxed{\mathsf{IV}}_{\mathsf{Anneau}\; \mathbb{Z}/n\mathbb{Z}}$

1 Structure

Lemme

Soient $a,b,c,d\in\mathbb{Z}$ tels que $\overline{a}=\overline{c}$ et $\overline{b}=\overline{d}$. Alors $\overline{ab}=\overline{cd}$

Définition

Si $a, b \in \mathbb{Z}$, on pose $\overline{a} \times \overline{b} = \overline{ab}$, ce qui définit une loi de composition interne \times sur $\mathbb{Z}/n\mathbb{Z}$.

Propriété

 $(\mathbb{Z}/n\mathbb{Z}, +, \times)$ est un anneau commutatif.

Propriété

Le groupe des inversibles de l'anneau $\mathbb{Z}/n\mathbb{Z}$ est l'ensemble des \overline{k} pour $k \in \mathbb{Z}$ tel que $k \wedge n = 1$.

\$

Méthode : Calcul de l'inverse d'un élément inversible

Si \overline{k} est inversible dans $\mathbb{Z}/n\mathbb{Z}$ (donc si $k \wedge n=1$), on trouve l'inverse de \overline{k} soit « de tête », soit en utilisant l'algorithme d'Euclide étendu pour trouver une relation de Bézout entre k et n.

Corollaire

 $(\mathbb{Z}/n\mathbb{Z},+,\times)$ est un corps si et seulement si n est premier.

2 Théorème Chinois

Théorème : chinois

Soient $n, m \in \mathbb{N}^*$ tels que $n \land m = 1$.

1re formulation Si $a,b \in \mathbb{Z}$, alors $\begin{cases} k \equiv a \ [n] \\ k \equiv b \ [m] \end{cases} \iff k \equiv c \ [nm] \ \text{où } c \ \text{est une solution particulière, qui existe bien.}$

- **2e formulation** Pour tout $k \in \mathbb{Z}$, note $(k \mod n)$, $(k \mod m)$ et $(k \mod nm)$ les classes de k dans $\mathbb{Z}/n\mathbb{Z}$, $\mathbb{Z}/m\mathbb{Z}$ et $\mathbb{Z}/nm\mathbb{Z}$ respectivement. On a alors
 - (i) Si $k, \ell \in \mathbb{Z}$, et si $(k \mod nm) = (\ell \mod nm)$, alors $(k \mod n) = (\ell \mod n)$ et $(k \mod m) = (\ell \mod m)$.
 - (ii) L'application

$$f: \begin{bmatrix} \mathbb{Z}/nm\mathbb{Z} & \longrightarrow & \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/m\mathbb{Z} \\ (k \bmod nm) & \longmapsto & (k \bmod n, k \bmod m) \end{bmatrix}$$

est un isomorphisme d'anneaux.

Méthode : Résolution de système de congruences

Trouver une solution particulière au système de congruence se fait soit en testant les valeurs, soit en trouvant des entiers de Bézout : on a $u,v\in\mathbb{Z}$ tels que $n\cdot u+m\cdot v=1$. Alors c=nub+mva est une solution particulière car $nu\equiv 1$ [m] et $mv\equiv 1$ [n].

On peut aussi résoudre directement le système en remarquant qu'il est équivalent à $k=a+n\cdot u=b+m\cdot v$ avec $u,v\in\mathbb{Z}$ et en résolvant l'équation diophantienne $n\cdot u-m\cdot v=b-a$ par la méthode habituelle.

3 Indicatrice d'Euler

Définition: Indicatrice d'Euler

L'**indicatrice d'Euler** est l'application définie sur \mathbb{N}^* par $\varphi(n) = \big| \big\{ k \in [\![1, n]\!], \ n \wedge k = 1 \big\} \big|.$

Propriété

Si p est premier, alors $\varphi(p) = p - 1$. Et si, plus généralement, $k \in \mathbb{N}^*$, $\varphi(p^k) = p^{k-1}(p-1)$.

Propriété

Soient $n, m \in \mathbb{N}^*$ tels que $n \land m = 1$.

- (i) Si $k \in \mathbb{Z}$, et si $(k \mod nm) \in U_{\mathbb{Z}/nm\mathbb{Z}}$ alors $(k \mod n) \in U_{\mathbb{Z}/n\mathbb{Z}}$ et $(k \mod m) \in U_{\mathbb{Z}/m\mathbb{Z}}$.
- (ii) L'application

$$g: \left| \begin{array}{ccc} U_{\mathbb{Z}/nm\mathbb{Z}} & \longrightarrow & U_{\mathbb{Z}/n\mathbb{Z}} \times U_{\mathbb{Z}/m\mathbb{Z}} \\ (k \bmod nm) & \longmapsto & (k \bmod n, k \bmod m) \end{array} \right|$$

est un isomorphisme de groupes (multiplicatifs).

Corollaire

 φ est multiplicative, c'est-à-dire que si $n \wedge m = 1$, alors $\varphi(nm) = \varphi(n)\varphi(m)$.

Corollaire

Plus généralement, si $n_1,...,n_r$ sont deux à deux premiers entre eux,

$$\varphi(n_1 \cdots n_r) = \varphi(n_1) \cdots \varphi(n_r).$$

Corollaire

Si p_1, \ldots, p_r sont les diviseurs premiers distincts de

$$\varphi(n) = n \prod_{k=1}^{r} \left(1 - \frac{1}{p_k} \right).$$

Théorème : d'Euler

Si $a \in \mathbb{Z}$ et $n \in \mathbb{N}^*$ tel que $a \wedge n = 1$, alors $a^{\varphi(n)} \equiv 1$ [n].

Corollaire : Petit théorème de Fermat

Si p est premier et $a \in \mathbb{Z}^*$ non divisible par p, alors $a^{p-1} \equiv 1 \ [p]$.

Dans tous les cas (que a soit divisible ou non par p), $a^p \equiv a \ [p]$.

Théorème : de Fermat-Wiles, ou grand théorème de Fermat

Si $n \in \mathbb{N}$ tel que $n \geqslant 3$, alors l'équation $x^n + y^n = z^n$ n'admet aucune solution dans \mathbb{N}^3_* .