Limites, continuité, compacité, connexité par arcs

Vrai ou faux

- 1. S'il existe une suite (u_n) convergeant vers a telle que $f(u_n) \to \ell$, alors f admet ℓ comme limite en a.
- 2. Pour que $f:A\subset\mathbb{R}^2\to F$ admette une limite en (0,0), il suffit que les applications partielles $x\mapsto f(x,0)$ et $y\mapsto f(0,y)$ convergent vers la même limite.
- 3. Toute application continue est uniformément continue.
- 4. Toute application lipschitzienne est uniformément continue.
- 5. Une application linéaire est toujours continue.

1. Exercices cherchés en cours

Solution de 1:

 $f(x,0) \xrightarrow[x \to 0]{} 0$: s'il y a une limite, c'est 0. $f(0,y) \xrightarrow[x \to 0]{} 0$ aussi mais cela ne suffit pas! $|f(x),y| \leq |x| + |y| \to 0$.

Autre méthode : changement de variable en polaire $x=r\cos\theta$ et $y=r\sin\theta$ avec $r=\sqrt{x^2+y^2}\to 0$. $f(r\cos\theta,r\sin\theta)=r(\cos^3\theta+\sin^3\theta)\to 0$.

 $g(0,y) \to 0$ et $g(x,x+x^2) \to 1$ donc pas de limite (par composition ou par caractérisation séquentielle).

Solution de 2:

f est discontinue en (0,0) malgré la continuité des applications partielles, mais continue ailleurs par opérations.

g est discontinue en (0,0) vu les applications partielles, mais continue ailleurs par opérations.

Montrer que $A=\{(x,y)\in\mathbb{R}^2,\;x^2\leqslant y\leqslant x\}$ est un fermé de $\mathbb{R}^2.$

4 CCINP 41 Énoncer quatre théorèmes différents ou méthodes permettant de prouver qu'une partie d'un espace vectoriel normé est fermée et, pour chacun d'eux, donner un exemple concret d'utilisation dans \mathbb{R}^2 .

Les théorèmes utilisés pourront être énoncés oralement à travers les exemples choisis.

Remarques:

1. On utilisera au moins une fois des suites.

- 2. On pourra utiliser au plus une fois le passage au complémentaire.
- 3. Ne pas utiliser le fait que \mathbb{R}^2 et l'ensemble vide sont des parties ouvertes et fermées.

Solution de 4 : CCINP 41

1. Soit E et F deux espaces vectoriels normés.

Soit $f: E \longrightarrow F$ une application continue.

L'image réciproque d'un fermé de F par f est un fermé de E.

Exemple: $A = \{(x,y) \in \mathbb{R}^2 \mid xy = 1\}$ est un fermé de \mathbb{R}^2 car c'est l'image réciproque du fermé

- $\{1\}$ de $\mathbb R$ par l'application continue $f: egin{array}{ccc} \mathbb R^2 & \longrightarrow \mathbb R \\ (x,y) & \longmapsto xy \end{array}$
- 2. Soit E un espace vectoriel normé. Soit $F \subset E$.

F est un fermé de E si et seulement si $\mathcal{C}_E F$ est un ouvert de E.

Exemple: $B = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 \geqslant 1\}$ est un fermé de \mathbb{R}^2 car $\mathcal{C}_{\mathbb{R}^2}B$ est un ouvert de \mathbb{R}^2 .

En effet, $\mathbb{C}_{\mathbb{R}^2}B = \{(x,y) \in \mathbb{R}^2 / x^2 + y^2 < 1\} = B_o(0,1)$ où $B_o(0,1)$ désigne la boule ouverte de centre 0 et de rayon 1 pour la norme euclidienne sur \mathbb{R}^2 .

Puis, comme toute boule ouverte est un ouvert, on en déduit que $\mathfrak{c}_{\mathbb{R}^2}B$ est un ouvert.

3. Caractérisation séquentielle des fermés :

Soit A une partie d'un espace vectoriel normé E.

A est un fermé de E si et seulement si, pour toute suite (x_n) à valeurs dans A telle que $\lim_{n\to +\infty} x_n = x$, alors $x\in A$.

Exemple: $C = \{(x, y) \in \mathbb{R}^2 / xy \ge 1\}$ est un fermé.

En effet, soit $((x_n, y_n))_{n \in \mathbb{N}}$ une suite de points de C qui converge vers (x, y).

 $\forall n \in \mathbb{N}, x_n y_n \geqslant 1$, donc, par passage à la limite, $xy \geqslant 1$ donc $(x,y) \in C$.

4. Une intersection de fermés d'un espace vectoriel normé E est un fermé de E.

Exemple: $D = \{(x, y) \in \mathbb{R}^2 / xy \geqslant 1 \text{ et } x \geqslant 0\}.$

On pose $D_1 = \{(x, y) \in \mathbb{R}^2 / xy \ge 1\}$ et $D_2 = \{(x, y) \in \mathbb{R}^2 / x \ge 0\}$.

D'après 3., D_1 est un fermé.

 D_2 est également un fermé.

En effet, D_2 est l'image réciproque du fermé $[0, +\infty[$ de $\mathbb R$ par l'application continue $f: \begin{cases} \mathbb R^2 & \longrightarrow \mathbb R \\ (x,y) & \longmapsto x \end{cases}$ On en déduit que $D=D_1\cap D_2$ est un fermé de E.

Remarque:

On peut aussi utiliser le fait qu'un produit de compacts est un compact et qu'un ensemble compact est fermé.

Exemple : $E = [0;1] \times [2;5]$ est un fermé de \mathbb{R}^2 .

En effet, comme [0;1] et [2;5] sont fermés dans $\mathbb R$ et bornés, ce sont donc des compacts de $\mathbb R$. On en déduit que E est un compact de $\mathbb R^2$ donc un fermé de $\mathbb R^2$.

- $oldsymbol{5}$ **CCINP 35** E et F désignent deux espaces vectoriels normés.
 - 1. Soient f une application de E dans F et a un point de E. On considère les propositions suivantes :
 - **P1.** f est continue en a.

P2. Pour toute suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de E telle que $x_n\xrightarrow[n\to+\infty]{}a$, alors $f(x_n)\xrightarrow[n\to+\infty]{}f(a)$.

Prouver que les propositions P1 et P2 sont équivalentes.

2. Soit A une partie dense dans E, et soient f et g deux applications continues de E dans F. Démontrer que si, pour tout $x \in A$, f(x) = g(x), alors f = g.

Solution de 5 : CCINP 35

1. Prouvons que $P1. \Longrightarrow P2..$

Supposons f continue en a.

Soit $(x_n)_{n\in\mathbb{N}}$ une suite d'éléments de E convergeant vers a. Prouvons que $\lim_{n\to+\infty}f(x_n)=f(a)$. Soit $\varepsilon>0$.

Par continuité de f en a, $\exists \alpha > 0$ / $\forall x \in E, ||x - a|| \leqslant \alpha \Rightarrow ||f(x) - f(a)|| \leqslant \varepsilon$. (*)

On fixe un tel α strictement positif.

Par convergence de $(x_n)_{n\in\mathbb{N}}$ vers a, $\exists N \in \mathbb{N}$ / $\forall n \in \mathbb{N}, n \geqslant N \Rightarrow ||x_n - a|| \leqslant \alpha$.

On fixe un N convenable.

Alors, d'après (*), $\forall n \in \mathbb{N}, n \geqslant N \Rightarrow ||f(x_n) - f(a)|| \leqslant \varepsilon$.

On peut donc conclure que $\lim_{n\to +\infty} f(x_n) = f(a)$.

Prouvons que $P2. \Rightarrow P1.$

Supposons P2. vraie.

Raisonnons par l'absurde en supposant que f non continue en a.

C'est-à-dire $\exists \varepsilon > 0 \ / \ \forall \alpha > 0$, $\exists x \in E$ tel que $||x - a|| \le \alpha$ et $||f(x) - f(a)|| > \varepsilon$.

On fixe un tel ε strictement positif.

Alors, $\forall n \in \mathbb{N}^*$, en prenant $\alpha = \frac{1}{n}$, il existe $x_n \in E$ tel que $||x_n - a|| \leqslant \frac{1}{n}$ et $||f(x_n) - f(a)|| > \varepsilon$. (*)

Comme $\forall n \in \mathbb{N}^*$, $||x_n - a|| \leqslant \frac{1}{n}$, la suite $(x_n)_{n \in \mathbb{N}^*}$ ainsi construite converge vers a.

Donc, d'après l'hypothèse, la suite $(f(x_n))_{n\in\mathbb{N}^*}$ converge vers f(a).

Donc $\exists N \in \mathbb{N}^*$ tel que $\forall n \in \mathbb{N}$, $n \geqslant N \Longrightarrow ||f(x_n) - f(a)|| \leqslant \frac{\varepsilon}{2}$.

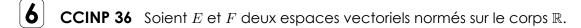
Ainsi, on obtient une contradiction avec (*).

2. Soit $x \in E$.

Puisque la partie A est dense dans E, il existe une suite $(x_n)_{n\in\mathbb{N}}$ d'éléments de A telle que $\lim_{n\to+\infty}x_n=x.$

On a alors : $\forall n \in \mathbb{N}, f(x_n) = g(x_n)$.

Et en passant à la limite, sachant que f et g sont continues sur E, on obtient f(x) = g(x).



- 1. Démontrer que si f est une application linéaire de E dans F, alors les propriétés suivantes sont deux à deux équivalentes :
 - **P1.** f est continue sur E.
 - **P2.** f est continue en 0_E .
 - **P3.** $\exists k > 0 \text{ tel que} : \forall x \in E, ||f(x)||_E \le k ||x||_E.$

2. Soit E l'espace vectoriel des applications continues de [0;1] dans \mathbb{R} muni de la norme définie $\operatorname{par}: \|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)| \text{ . On considère l'application } \varphi \operatorname{de} E \operatorname{dans} \mathbb{R} \operatorname{définie} \operatorname{par} \varphi(f) = \int_{-1}^{1} f(t) \mathrm{d}t.$ Démontrer que φ est linéaire et continue.

Solution de 6 : CCINP 36

1. P1 \Rightarrow P2 de manière évidente.

Prouvons que $P2 \Rightarrow P3$.

Supposons f continue en 0_E .

Pour $\varepsilon = 1 > 0$, il existe $\alpha > 0$ tel que $\forall x \in E, ||x - 0_E|| \le \alpha \Rightarrow ||f(x) - f(0_E)|| \le 1$.

Soit $x \in E$

Si $x \neq 0_E$, posons $y = \frac{\alpha}{\|x\|} x$. Puisque $\|y\| = \alpha$, on a $\|f(y)\| \leqslant 1$.

Donc, par linéarité de f on obtient $\|f(x)\| \leqslant \frac{1}{\alpha} \|x\|$. Si $x = 0_E$ l'inégalité précédente est encore vérifiée.

En prenant alors $k=\frac{1}{\alpha}$, on obtient le résultat voulu.

Prouvons que P3 \Rightarrow P1.

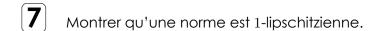
Supposons que $\exists k > 0$ tel que $\forall x \in E, ||f(x)|| \leq k ||x||$.

Comme f est linéaire, $\forall (x,y) \in E^2$, $||f(y) - f(x)|| = ||f(y-x)|| \leq k ||y-x||$.

La fonction f est alors lipschitzienne, donc continue sur E.

2. L'application φ est une forme linéaire par linéarité de l'intégrale et continue car :

$$\forall\,f\in E\text{, }|\varphi(f)|=\left|\int_0^1f(t)\,\mathrm{d}t\right|\leqslant\int_0^1|f(t)|\,\mathrm{d}t\leqslant\int_0^1\|f\|\mathrm{d}t=\|f\|.$$



Solution de 7:

Conséquence de l'inégalité triangulaire (celle de gauche).

- 1. Montrer que $\varphi:f\in (\mathcal{C}([a,b],\mathbb{C}),N_\infty)\mapsto \int_a^b f(t)\,\mathrm{d}t\in (\mathbb{C},|\cdot|)$ est continue. Est-ce encore le cas avec la norme N_1 de la convergence en moyenne?
- 2. Montrer que $f \in (\mathcal{C}([0,1],\mathbb{C}),N_1) \mapsto f(0) \in (\mathbb{C},|\cdot|)$ est non continue.

Solution de 8:

- 1. C'est une forme linéaire telle que pour tout f, $\varphi(f) \leqslant (b-a)N_{\infty}(f)$. C'est encore le cas avec N_1 .
- 2. Considérer f_n telle que $f_n(0)=1$ mais $\|f_n\|_1=\frac{1}{n}$ (par exemple un triangle : $f_n(0)=1$, $f_n(x)=0$ si $x\geqslant \frac{2}{n}$ et f_n affine entre 0 et $\frac{2}{n}$) ou alors $f_n: x\mapsto x^n$

- 1. Montrer qu'il y a équivalence entre
 - (i) ℓ est valeur d'adhérence de u.
 - (ii) Pour tout $\varepsilon > 0$, $\{n \in \mathbb{N}, u_n \in B(\ell, \varepsilon)\}$ est infini.
 - (iii) Pour tout $\varepsilon > 0$, pour tout $p \in \mathbb{N}$, $\{n \geqslant p, u_n \in B(\ell, \varepsilon)\}$ n'est pas vide.
- 2. Application classique : en déduire que l'ensemble des valeurs d'adhérences de u est fermé.

Solution de 9:

1.

- (i) \Longrightarrow (ii) Si ℓ est valeur d'adhérence, φ extractrice telle que $u_{\varphi(n)} \to \ell$, $\varepsilon > 0$, alors apcr $u_{\varphi(n)} \in B(\ell, \varepsilon)$.
- (ii) \Longrightarrow (iii) Soit $\varepsilon > 0$, si $\{n \in \mathbb{N}, u_n \in B(\ell, \varepsilon)\}$ est majoré et si $p \in \mathbb{N}$, $\{n \geqslant p, u_n \in B(\ell, \varepsilon)\}$ ne peut être vide, sinon l'ensemble $\{n \in \mathbb{N}, u_n \in B(\ell, \varepsilon)\}$ serait majoré par p et inclus dans \mathbb{N} donc fini.
- (iii) \Longrightarrow (i) Si pour tout $\varepsilon>0$, pour tout $p\in\mathbb{N}$, $\{n\geqslant p, u_n\in B(\ell,\varepsilon)\}$ n'est pas vide, on construit une suite extraite convergeant vers ℓ : on pose $\varphi(0)\in\mathbb{N}$ tel que $\varphi(0)\geqslant 0$ et $u_{\varphi(0)}\in B\left(\ell,\frac{1}{2^0}\right)$. Puis $\varphi(1)\geqslant p=\varphi(0)+1$ tel que $u_{\varphi(1)}\in B\left(\ell,\frac{1}{2^1}\right)$. Et par récurrence, pour tout $n\in\mathbb{N}^*$, $\varphi(n)\geqslant p=\varphi(n-1)+1$ tel que $u_{\varphi(n)}\in B\left(\ell,\frac{1}{2^n}\right)$. Alors φ est strictement croissante et, par construction, $u_{\varphi(n)}\to \ell$.
- 2. Soit A l'ensemble des valeurs d'adhérences de u. Montrons que cA est ouverte. Si $x \in {}^cA$, on a $\varepsilon > 0$ tel que $\{n, u_n \in B(x, \varepsilon)\}$ est fini et donc aucun des élément de $B(x, \varepsilon)$ ne peut être valeur d'adhérence non plus, c'est-à-dire que $B(x, \varepsilon) \subset {}^cA$, ce qui signifie bien que cA est ouverte et que A est fermée.

(10) CCINP 13 (nouveau)

- 1. Rappeler, oralement, la définition, par les suites de vecteurs, d'une partie compacte d'un espace vectoriel normé.
- 2. Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie fermée de cet espace.
- 3. Démontrer qu'une partie compacte d'un espace vectoriel normé est une partie bornée de cet espace. Indication : On pourra raisonner par l'absurde.
- 4. On se place sur $E=\mathbb{R}[X]$ muni de la norme $\|\|_1$ définie pour tout polynôme $P=a_0+a_1X+\ldots+a_nX^n$ de E par : $\|P\|_1=\sum_{i=0}^n|a_i|$.
 - (a) Justifier que $S(0,1)=\{P\in\mathbb{R}[X]/\|P\|_1=1\}$ est une partie fermée et bornée de E.
 - (b) Calculer $\|X^n X^m\|_1$ pour m et n entiers naturels distincts. S(0,1) est-elle une partie compacte de E? Justifier.

Solution de 10 : CCINP 13 (nouveau)

1. Une partie A d'un espace vectoriel normé $(E,\|\cdot\|)$ est compacte si de toute suite à valeurs dans A on peut extraire une sous-suite qui converge dans A.

C'est-à-dire il existe $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante telle que $\left(x_{\varphi(n)}\right)$ converge vers $\ell\in A$. Remarque: $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ étant strictement croissante, on a, par récurrence immédiate, $\forall n\in\mathbb{N}, \varphi(n)\geqslant n$.

2. Soit $(E, \|\cdot\|)$ un espace vectoriel normé. Soit A une partie compacte de E.

Montrons que A est une partie fermée de E.

C'est-à-dire montrons que toute suite à valeurs dans A qui converge, converge dans A.

Soit (u_n) une suite à valeurs dans A telle que (u_n) converge vers ℓ . A est une partie compacte donc il existe $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})$ converge vers $\ell' \in A$.

Or, (x_n) converge vers ℓ donc $(x_{\varphi(n)})$ converge vers ℓ , en tant que sous-suite de (x_n) . Par unicité de la limite, $\ell' = \ell$.

Or, $\ell' \in A$ donc $\ell \in A$.

3. Soit (E, ||||) un espace vectoriel normé.

Rappel: Soit B une partie de E. B est bornée si et seulement si $\exists M \in \mathbb{R}/\forall x \in B, ||x|| \leq M$.

Soit A une partie compacte de E. Montrons que A est une partie bornée de E.

Raisonnons par l'absurde. Supposons que A est non bornée.

C'est-à-dire, $\forall M \in \mathbb{R}, \exists x \in A/\|x\| > M$.

Donc, $\forall n \in \mathbb{N}, \exists x_n \in A/\|x_n\| > n$ (*)

 (x_n) est une suite à valeurs dans A et A est une partie compacte donc il existe $\varphi: \mathbb{N} \longrightarrow \mathbb{N}$ strictement croissante telle que $(x_{\varphi(n)})$ converge vers $\ell \in A$.

Donc, d'après $(*), \forall n \in \mathbb{N}, ||x_{\varphi(n)}|| > \varphi(n)$.

Or $\forall n \in \mathbb{N}, \varphi(n) \geqslant n$.

Donc, $\forall n \in \mathbb{N}, ||x_{\varphi(n)}|| > n$.

Donc, $\lim_{n\to+\infty} ||x_n|| = +\infty$.

Absurde car $(x_{\varphi(n)})$ converge donc $(x_{\varphi(n)})$ est bornée.

4. Posons S = S(0, 1).

(a) $\forall x \in S, ||x|| = 1$ donc S est bornée.

$$\text{Soit } f: \begin{array}{ccc} E & \longrightarrow & \mathbb{R} \\ x & \longmapsto & \|x\| \end{array} \ \forall (x,y) \in E^2, \|\|x\| - \|y\| \ |\leqslant \|x-y\| \ \text{donc } f \text{ est 1-lipschitzienne.}$$

Donc f est continue sur E.

Or, $S=f^{-1}(1)$ et $\{1\}$ est un fermé de $\mathbb R$ donc S est une partie fermée de E, en tant qu'image réciproque par une application continue d'un fermé.

(b) Soit $(m, n) \in \mathbb{N}^2$.

$$||X^n - X^m||_1 = 2$$

Supposons que S soit une partie compacte.

 (X^n) est une partie compacte de E donc existe $\varphi:\mathbb{N}\longrightarrow\mathbb{N}$ strictement croissante telle que $\left(X^{\varphi(n)}\right)$ converge vers $\ell\in S$.

 $\text{Alors } \lim_{n \to +\infty} \left\| X^{\varphi(n)} - X^{\varphi(n+1)} \right\|_1 = \left| \ell - \ell \right| = 0 \text{ contredit } \left\| X^{\varphi(n)} - X^{\varphi(n+1)} \right\|_1 = 2.$

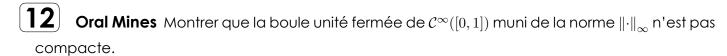
Donc S est non compact.

 $\boxed{\textbf{11}} \quad \text{Trèèèèès classique } \text{Montrer que } \mathcal{O}(n) = \{M \in \mathcal{M}_n(\mathbb{R}), M^\intercal M = I_n\} \text{ est compact.}$

Solution de 11 : Trèèèèès classique

On est en dimension finie, il suffit de montrer que $\mathcal{O}(n)$ est fermée et bornée pour n'importe quelle norme.

Or $\mathcal{O}(n)$ est fermée comme image réciproque du fermé $\{I_n\}$ par l'application continue $M\mapsto M^\intercal M$ (bilinéarité du produit matriciel et linéarité de la transposition) et bornée car, avec la norme euclidienne $\|M\|^2=\operatorname{tr}(M^\intercal M)$, on a $\mathcal{O}(n)\subset \overline{B}(0,\sqrt{n})$.



Solution de 12 : Oral Mines

 $f_n: x \in [0,1] \mapsto x^n$ est continue, de norme 1 et converge simplement vers $\delta_{\cdot,1}$. Si on pouvait en extraire une suite uniformément convergente, la limite devrait être continue.

2. Limites et continuité

$$\begin{array}{ll} f: \ (x,y) \mapsto \frac{xy}{x+y} & \qquad \qquad h: \ (x,y) \mapsto \frac{1-\cos{(xy)}}{y^2} & \qquad j: \ (x,y) \mapsto \frac{\sin{x}-\sin{y}}{\sinh{x}-\sinh{y}} \\ g: \ (x,y) \mapsto \frac{(x+y)^2}{x^2+y^2} & \qquad i: \ (x,y) \mapsto \frac{(1+x^2+y^2)\sin{y}}{y} & \qquad k: \ (x,y) \mapsto \frac{\sin{x}-\sin{y}}{\sinh{x}-\sin{y}} \end{array}$$

Solution de 13:

- Pas de limite : $f(x, -x + x^2) \to -1 \neq 0 = f(x, 0)$.
- Pas de limite : f(x, x) = 2 et f(x, 0) = 1.
- $\bullet \ \ h(x,y) \sim \frac{x^2y^2}{2y^2} = \frac{x^2}{2} \rightarrow 0 \ \text{lorsque} \ (x,y) \rightarrow (0,0).$
- $\bullet \ i(x,y) \to 1 \ {\rm car} \ \frac{\sin y}{y} \to 1.$
- Avec des formules de trigonométrie (la formule hyperbolique est à redémontrer),

$$j(x,y) = \frac{\sin\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)}{\sinh\left(\frac{x-y}{2}\right)\cos\left(\frac{x+y}{2}\right)} \sim \frac{\frac{x-y}{2}}{\frac{x-y}{2}} = 1.$$

• $k(x,0) \rightarrow 1$ et k(x,x) = -1 : pas de limite.

$$oxed{14}$$
 On travaille dans \mathbb{R}^2 . Étudier les prolongements par continuité des fonctions suivantes

$$f: (x,y) \mapsto \frac{\cos x - \cos y}{x-y}$$
 $g: (x,y) \mapsto \frac{x^2 + y^2}{x}$

Solution de 14:

• On prolonge en tout $(x_0,x_0)\in\mathbb{R}^2$. Si $(x,y)\neq(x_0,x_0)$, par théorème des accroissements finis (dont cos vérifie bien les hypothèses), on a $c_{x,y}$ entre x et y tel que $f(x,y)=\cos'c_{x,y}=-\sin c_{x,y}$. Lorsque $(x,y)\to(x_0,x_0)$, $c_{x,y}\to x_0$ par encadrement et par continuité de sin, $f(x,y)\to-\sin x_0$. On prolonge f en posant pour tout $x\in\mathbb{R}$, $f(x,x)=-\sin x$.

Attention, contrairement aux fonctions d'une seule variable, la continuité du prolongement n'est pas automatique.

Mais il est automatiquement continu sur $\mathbb{R}^2 \setminus \{(x,x), x \in \mathbb{R}\}$ et si $x_0 \in \mathbb{R}$, on a

$$\star \ f(x,y) = \frac{\cos x - \cos y}{x-y} \to -\sin x_0 = f(x_0,x_0) \ \text{pour} \ (x,y) \in \mathbb{R}^2 \setminus \{(x,x),x \in \mathbb{R}\}$$

$$\star \ f(x,x) = -\sin x \to -\sin x_0 = f(x_0,x_0)$$

donc, avec le lemme du préambule, le prolongement est bien continu sur \mathbb{R}^2 entier.

- La fonction g est continue sur $\mathbb{R}^2\setminus\{(0,y),y\in\mathbb{R}\}$ par opérations. Si $y_0\in\mathbb{R}$, $g(x,y)=x+\frac{y^2}{x}$ n'a pas de limite pour $(x,y)\to(0,y_0)$ si $y_0\neq 0$, et $g(x,0)\to 0$ pour $x\to 0$, $g\left(x^2,x\right)\to 1$ pour $x\to 0$ donc g n'a pas de limite en (0,0) non plus. Il n'y a donc pas de prolongement de g par continuité.
- On travaille dans \mathbb{R}^2 . Étudier la continuité sur leur domaine de définition des fonctions suivantes :

$$\begin{array}{ll} f: \ (x,y) \mapsto \left\{ \begin{array}{ll} \frac{x^4y^4}{(x^2+y^2)^3} & \text{si } (x,y) \neq (0,0), \\ 0 & \text{sinon.} \end{array} \right. \\ g: \ (x,y) \mapsto \left\{ \begin{array}{ll} \frac{\sqrt{x^4-2x^3y+x^2y^2}}{x-y} & \text{si } x \neq y, \\ \frac{x-y}{|x|} & \text{sinon.} \end{array} \right. \\ f: \ (x,y) \mapsto \left\{ \begin{array}{ll} \frac{\sqrt{x^4-2x^3y+x^2y^2}}{x-y} & \text{si } x \neq y, \\ \frac{x-y}{|x|} & \text{sinon.} \end{array} \right. \end{array}$$

Solution de 15:

- En polaires, $f(x,y)=r^2\cos^4\theta\sin^4\theta\to 0=f(0,0)$ lorsque $(x,y)\to (0,0)$ donc f est continue sur \mathbb{R}^2 .
- g est continu en tout point de $\mathbb{R}^2\setminus\{(x,0),x\in\mathbb{R}\}$ par opérations. Et si $x_0\in\mathbb{R}$, Pour $y\neq 0$, $g(x,y)=\frac{(1+x^2)\sin y}{y}\to 1+x_0=g(x_0,0)$, et $g(x,0)=1+x^2\to 1+x_0^2=g(x_0,0)$ donc, avec le lemme du préambule, g est continue sur \mathbb{R}^2 .
- On remarque que $x^4 2x^3y + x^2y^2 = (x^2 xy)^2$, donc, si $x \neq y$, $h(x,y) = \operatorname{sgn}(x-y)|x|$. h est continue par opérations sur $\mathbb{R}^2 \setminus \{(x,x), x \in \mathbb{R}\}$. Si $x \neq 0$, $f\left(x, x + \frac{1}{n}\right) = -|x| \not\rightarrow |x| = f(x,x)$ donc f n'est pas continue en (x,x). En (0,0), si $x \neq 0$, $f(x,y) = \operatorname{sgn}(x-y)|x| \xrightarrow[(x,y)\to(0,0)]{} 0 = f(0,0)$ et $f(x,x) = |x| \xrightarrow[x\to0]{} 0 = f(0,0)$ donc avec le lemme du préambule, f en continue en (0,0).

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{16} & \text{Soit } f: \ \mathbb{R} \mapsto \mathbb{R} \text{ de classe } \mathcal{C}^1 \text{ et } g: \left| \begin{array}{ccc} \mathbb{R}^2 & \longrightarrow & \mathbb{R} \\ (x,y) & \longmapsto & \left\{ \begin{array}{ccc} \frac{f(x)-f(y)}{x-y} & \text{si } x \neq y \\ f'(x) & \text{sinon} \end{array} \right. \end{array}$$

Montrer que g est continue sur \mathbb{R}^2 .

Montrer que f est 2-lipschitzienne.

3. Continuité des applications linéaires

- **18** Un exemple de norme subordonnée On note $\ell^{\infty}(\mathbb{C})$ l'espace vectoriel des suites complexes bornées. Pour toute suite $u=(u_n)_{n\in\mathbb{N}}$ appartenant à $\ell^{\infty}(\mathbb{C})$, on pose $\|u\|_{\infty}=\sup_{n\in\mathbb{N}}|u_n|$ et $\Delta(u)=(u_{n+1}-u_n)_{n\in\mathbb{N}}$.
 - 1. Montrer que $\|\cdot\|_{\infty}$ est une norme sur $\ell^{\infty}(\mathbb{C})$.
 - 2. Montrer que Δ est un endomorphisme de $\ell^{\infty}(\mathbb{C})$.
 - 3. Montrer que l'application Δ est continue pour la norme $\|\cdot\|_{\infty}$.
 - 4. On pose $M=\sup_{u\in\ell^\infty(\mathbb{C})\backslash\{0\}}\frac{\|\Delta(u)\|_\infty}{\|u\|_\infty}$. Justifier l'existence de M et le calculer.
- **19** Soit u l'application de $\mathcal{C}([0,1],\mathbb{R})$ vers \mathbb{R} définie par u(f)=f(1).
 - 1. Démontrer que u n'est pas continue si l'on munit $\mathcal{C}([0,1],\mathbb{R})$ de la norme N_1 .
 - 2. L'application u est-elle continue si l'on munit $\mathcal{C}([0,1],\mathbb{R})$ de la norme N_{∞} ?
- 20 Norme subordonnée d'une application linéaire

On définit, si f est une application linéaire continue du \mathbb{K} -evn $(E, \|.\|_E)$ dans le \mathbb{K} -evn $(F, \|.\|_F)$,

$$|||f||| = \sup \left(\left\{ \frac{\|f(x)\|_F}{\|x\|_E} \; ; \; x \in E \setminus \{0_E\} \right\} \right) = \sup_{x \neq 0_E} \frac{\|f(x)\|_F}{\|x\|_E}$$

- 1. Montrer que |||.||| est bien définie.
- 2. Montrer que, si $f \in \mathcal{L}_c(E, F)$ (espace des applications linéaires continues de E dans F),

$$|||f||| = \sup_{\|x\|_E = 1} ||f(x)||_F$$

- 3. Montrer que ||f|| est le plus petit k tel que, pour tout $x \in E$, $||f(x)||_F \leqslant k||x||_E$
- 4. Montrer que $\|\cdot\|$ est une norme sur $\mathcal{L}_c(E,F)$
- 5. |Ici E = F, $\mathcal{L}_c(E, F) = \mathcal{L}_c(E)$. Calculer $\||\text{Id}\||$ et montrer que $\forall (u, v) \in \mathcal{L}_c(E)^2$, $\||v \circ u\|| \leqslant \||u\|| \||v\||$

Solution de 20 : Norme subordonnée d'une application linéaire

- 1. $\left\{\frac{\|f(x)\|_F}{\|x\|_E}; x \in E \setminus \{0_E\}\right\}$ est, si f est une application linéaire continue, majoré (par caractérisation de la continuité des applications linéaires). C'est un ensemble non vide (en supposant bien sûr, ce qui est implicite, que $E \neq \{0_E\}$). D'où le bonne définition.
- 2. Il suffit de remarquer que

$$\left\{ \frac{\|f(x)\|_F}{\|x\|_E} \; ; \; x \in E \setminus \{0_E\} \right\} = \left\{ \left\| f\left(\frac{1}{\|x\|_E} x\right) \right\|_F \; ; \; x \in E \setminus \{0_E\} \right\} \\
= \left\{ \|f(y)\|_F \; ; \; y \in S(0_E, 1) \right\}$$

où $S(0_E,1)$ est la sphère unité de E.

3. Les lignes suivantes sont équivalentes :

$$\begin{aligned} &\forall x \in E & \quad |||f(x)|||_F \leqslant k ||x||_E \\ &\forall x \in E \setminus \{0_E\} & \quad |||f(x)|||_F \leqslant k ||x||_E \\ &k \text{ majore } \left\{ \frac{\|f(x)\|_F}{\|x\|_E} \; ; \; x \in E \setminus \{0_E\} \right\} \end{aligned}$$

La borne supérieure d'un ensemble étant son plus petit majorant, on conclut. Cette propriété est bien utile dans la pratique.

4. On a vu que $\|\cdot\|$ était bien définie sur $\mathcal{L}_c(E,F)$, et elle est bien clairement à valeurs dans \mathbb{R}^+ . Soit $\lambda \in \mathbb{K}$ (rappelons que \mathbb{K} est \mathbb{R} ou \mathbb{C}).

$$\forall x \in E \quad \|(\lambda f)(x)\|_F = |\lambda| \ \|f(x)\|_F \leqslant |\lambda| \ \||f|| \ \|x\|_E$$

(par 3.) et donc, encore par 3., $\||\lambda f\|| \le |\lambda| \||f\||$. Inégalité que l'on peut appliquer en remplaçant f par λf et λ par $1/\lambda$, si du moins $\lambda \neq 0$ (mais si $\lambda = 0$, il n'y a rien à faire, on peut donc exclure ce cas). On obtient alors l'homogénéité.

Soit f et g dans $\mathcal{L}_c(E,F)$. Alors

$$\forall x \in E \quad \|(f+g)(x)\|_F \leqslant \|f(x)\|_F + \|g(x)\|_F \leqslant (\||f\|| + \||g\||) \|x\|_E$$

D'où, encore grâce à 3, l'inégalité triangulaire. Pour finir, $||f|| = 0 \Rightarrow f = \Theta$ est bien simple.

4. Continuité et topologie

21 Topologie matricielle

- 1. Montrer de deux manières différentes que $\mathcal{GL}_n(\mathbb{K})$ est dense dans $\mathcal{M}_n(\mathbb{K})$. En déduire que si $A, B \in \mathcal{M}_n(\mathbb{K})$, $\chi_{AB} = \chi_{BA}$.
- 2. Démontrer que $\mathcal{GL}_n(\mathbb{K})$ est un ouvert de $\mathcal{M}_n(\mathbb{K})$.
- 3. Montrer que l'ensemble des matrices triangulaires supérieures de $\mathcal{M}_n(\mathbb{K})$ et l'ensemble des matrices symétriques sont fermés.
- 4. Démontrer que l'ensemble $\mathcal{O}(n)$ des matrices orthogonales est fermé.
- 5. Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{C})$ est dense. En déduire le théorème de Cayley-Hamilton.
- 6. L'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{R})$ est-il dense?

 On pourra considérer l'application qui à une matrice 2×2 associe le discriminant de son polynôme caractéristique.
- 7. Montrer que l'ensemble des matrice de rang $p \in [1, n-1]$ n'est ni ouvert ni fermé. Étudier les cas p=0 et p=n.

Solution de 21 : Topologie matricielle

1. 1re méthode : pour k assez grand, $\frac{1}{k}$ n'est pas valeur propre de $M \in \mathcal{M}_n(\mathbb{K})$ car le nombre de valeurs propres est fini. Alors $M_k = M - \frac{1}{k} I_n \in \mathcal{GL}_n(\mathbb{K})$ et $M_k \to M$.

 2^{e} méthode : on a P,Q inversibles telles que $M=PJ_rQ$ avec $r=\mathrm{rg}\,M$. On pose $J_{r,k}=J_r+\frac{1}{k}I_n$. Alors $J_{r,k}$ est inversible et $J_{r,k}\xrightarrow[k\to+\infty]{}J_r$. Par continuité de l'application linéaire en dimension finie $A\mapsto PAQ$, $(M_k)_k=(PJ_{r,k}Q_k$ est une suite de matrices inversibles telles que $M_k\to M$.

On vérifie que $\chi_{AB}=\chi_{BA}$ si A est inversible car $AB=A(BA)A^{-1}$ et le polynôme caractéris-

Donc $A\mapsto \chi_{AB}-\chi_{BA}$ est nulle sur $\mathcal{GL}_n(\mathbb{K})$ et continue car les cœfficients du polynôme $\chi_{AB}-\chi_{BA}$ sont polynomiaux en ceux de A.

Autre argument : si (A_k) suite de matrices inversibles convergeant vers A, alors pour tout k, $\chi_{A_kB}=\chi_{BA_k}$, puis $A_kB\to AB$ et $BA_k\to BA$ car $A\mapsto AB$ et $B\mapsto BA$ sont linéaires en dimension finie (au départ) donc continues. Et $A\mapsto \chi_A=\det(XI_n-A)$ est continue car les cœfficient du polynôme caractéristiques sont polynomiaux en ceux de A.

Donc avec $k \to +\infty$, $\chi_{AB} = \chi_{BA}$.

tique est un invariant de similitude.

- 2. $\mathcal{GL}_n(\mathbb{K}) = \det^{-1}(\mathbb{K} \setminus \{0\})$ image réciproque d'un ouvert par une application continue (car polynomiale).
- 3. Soit $\varphi_{i,j}:A\mapsto a_{i,j}$, linéaire donc continue sur $\mathcal{M}_n(\mathbb{K})$. $\mathcal{T}_n^+(\mathbb{K})=\bigcap_{1\leqslant j< i\leqslant n}\varphi_{i,j}^{-1}(\{0\})$ fermé comme

intersection (finie) de fermés.

Soit $u: A \in \mathcal{M}_n(\mathbb{K}) \mapsto A^\intercal - A$ définie sur un espace de dimension finie et linéaire donc continue. $\mathcal{S}_n(\mathbb{K}) = u^{-1}(\{0\})$ est fermé comme image réciproque d'un fermé par cette application.

- 4. $f:(A,B)\in\mathcal{M}_n(\mathbb{K})^2\mapsto AB^\intercal$ est continue car bilinéaire sur un espace de dimension finie, donc $A\mapsto AA^\intercal$ l'est aussi par composition.
 - $\mathcal{O}(n)=f^{-1}(\{I_n\})$ est fermé comme image réciproque d'un fermé par une application continue.
- 5. Soit $M \in \mathcal{M}_n(\mathbb{C})$. M est trigonalisable : on peut écrire $M = PTP^{-1}$ avec T triangulaire, avec sur la diagonale les valeurs propres $\lambda_1, \ldots, \lambda_n$ comptées avec multiplicité.

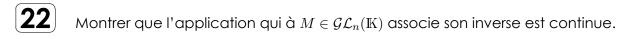
Soit, pour $k \geqslant 1$, $T_k = T + \operatorname{diag}\left(\frac{1}{k}, \frac{2}{k}, \dots, \frac{n}{k}\right)$.

Il n'y a qu'un nombre fini de k pour lesquels on ait $\lambda_i+\frac{i}{k}=\lambda_j+\frac{j}{k}$ avec $i\neq j$ (ce qui revient à $\frac{1}{k}=\frac{\lambda_i-\lambda_j}{i-j}$), on est sûr à partir d'un certain rang que T_k possède n valeurs propres distinctes en dimension n, donc est diagonalisable. C'est donc aussi le cas de $M_k=PT_kP^{-1}$.

Or $M_k \to M$ car $T_k \to T$ et $A \mapsto PAP^{-1}$ linéaire sur un espace de dimension finie donc continue.

D'où la densité.

- 6. $\Delta: M \mapsto$ le discriminant de χ_M est continue car polynomiale en les cœfficients de M. Tout matrice diagonalisable M dans $\mathcal{M}_2(\mathbb{R})$ a des racines réelles donc $\Delta(M) \geqslant 0$. Ainsi, tout matrice M limite d'une suite de matrices diagonalisable vérifie aussi $\Delta(M) \geqslant 0$. Or il existe des matrices réelles sans valeur propre réelle, d'où l'absence de densité.
- 7. Montrer que l'ensemble des matrices de rang $p \in [1, n-1]$ n'est ni ouvert ni fermé. Étudier les cas p=0 et p=n.



Solution de 22:

Formule de la comatrice!

Montrer que l'application qui à $M\in\mathcal{M}_n(\mathbb{K})$ associe son polynôme minimal n'est pas continue.

Solution de 23:

Construire par exemple une suite de matrices diagonalisables simples tendant vers la matrice nulle.

24

Autour de la distance à une partie Soit $(E, \|\cdot\|)$ un \mathbb{K} -espace vectoriel normé.

Pour A partie de non vide de E et $x \in E$, on pose $d(x,A) = \inf_{a \in A} \|x - a\|$.

- 1. Rappeler pourquoi d(x, A) est bien définie et $x \mapsto d(x, A)$ est continue.
- 2. Montrer que d(x, A) = 0 si et seulement si $x \in \overline{A}$.
- $\text{3. Pour tout } n \in \mathbb{N}^* \text{, on d\'efinit } A_n = \bigg\{ x \in E, \ d(x,A) < \frac{1}{n} \bigg\}.$
 - (a) Montrer que A_n est ouvert.
 - (b) Montrer que $\bigcap_{n\in\mathbb{N}^*}A_n=\overline{A}$.
 - (c) En déduire que tout fermé de E est une intersection dénombrable (ie indexée par des entiers) d'ouverts.
 - (d) Montrer que tout ouvert de E est une réunion dénombrable de fermés.

4. Cas où la distance à un fermé est convexe

On suppose que F est une partie non vide fermée de E et que $x\mapsto d(x,F)$ est convexe, c'est-à-dire que pour tout $x,y\in E$ et $t\in [0,1]$, $d(tx+(1-t)y,F)\leqslant td(x,F)+(1-t)d(y,F)$. Prouver que F est convexe.

- 5. Tout espace vectoriel normé est séparé et normal On suppose que F_1 et F_2 sont des fermés non vides disjoints de E.
 - (a) E est **séparé** 1 : c'est le cas où F_1 et F_2 sont des singletons. Si $x_1 \neq x_2$, montrer qu'on peut trouver des ouverts U,V disjoints de E tels que $x_1 \in U$ et $x_2 \in V$.
 - (b) Montrer qu'il existe une application continue $f: E \to [0,1]$ telle que $F_1 = f^{(-1)}(\{1\})$ et $F_2 = f^{(-1)}(\{0\})$.

On pourra construire une telle application à partir d'un quotient faisant intervenir les applications $x \mapsto d(x, F_1)$ et $x \mapsto d(x, F_2)$.

- (c) E est **normal**: Montrer qu'il existe deux ouverts disjoints U et V tels que $F_1 \subset U$ et $F_2 \subset V$. On pourra introduire $\varphi : x \mapsto d(x, F_1) d(x, F_2)$.
- **25**) Caractérisations de la continuité Soit $f: E \to F$ où E, F sont deux espaces vectoriels normés. Montrer que les propriétés suivantes sont équivalentes :
 - 1. L'application f est continue.
 - 2. L'image réciproque par f de tout ouvert de F est un ouvert de E.
 - 3. L'image réciproque par f de tout fermé de F est un fermé de E.
 - 4. Pour toute partie A de E, $f(\overline{A}) \subset \overline{f(A)}$.
 - 5. Pour toute partie B de F, $\overline{f^{-1}(B)} \subset f^{-1}\left(\overline{B}\right)$.
 - 6. Pour toute partie C de F, $\operatorname{Fr}\left(f^{-1}(C)\right)\subset f^{-1}\left(\operatorname{Fr}(C)\right)$.
 - 1. C'est cet axiome qui garantit l'unicité de la limite.

Compacité

- Montrer que la sphère unité de $\mathbb{K}[X]$ muni de la norme $\|P\|_{\infty} = \sup_{k \in \mathbb{N}} |p_k|$ n'est pas compacte. On pourra utiliser la suite $(X^n)_n$.
- **Écrits Mines** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que $\{AQ, Q \in \mathcal{O}(n)\}$ est compact.

Solution de 27 : Écrits Mines

C'est image du compact $\mathcal{O}(n)$ par l'application continue $Q \mapsto AQ$ car linéaire en dimension finie.

Classique – Écrits Mines – Propriété de Borel-Lebesgue

Montrer que si K est compact, pour tout $\varepsilon > 0$, on peut «recouvrir» K par des boules ouvertes de rayon ε , c'est-à-dire qu'il existe une famille finie (x_1,\ldots,x_n) d'éléments de K telle que $K \subset \bigcup B(x_i, \varepsilon).$

Solution de 28 : Classique – Écrits Mines – Propriété de Borel-Lebesgue

Sinon, supposons $K \neq \varnothing$. On a $\varepsilon > 0$ tel que pour tout $n \in \mathbb{N}$, et pour tout x_0, \ldots, x_n , $K \not\subset \bigcup B(x_i, \varepsilon)$.

Donnons-nous $x_0 \in K$. puis $x_1 \in K$ tel que $x_1 \notin B(x_0, \varepsilon)$. Puis $x_2 \notin \bigcup_{i=0}^1 B(x_i, \varepsilon)$. Et, par récurrence, pour tout $n \in \mathbb{N}$, $x_n \in \mathbb{K}$ tel que $x_n \notin \bigcup_{i=0}^{n-1} B(x_i, \varepsilon)$.

On a alors, pour tout $n, m \in \mathbb{N}$ tel que $n \neq m$, $||x_n - x_m|| \geqslant \varepsilon$.

Or on peut extraire de (x_n) une suite convergente, ce qui est contradictoire.

Soit $(E, \|\cdot\|)$ un \mathbb{R} -espace vectoriel normé, $n \in \mathbb{N}$, a_1, \ldots, a_n des points de E, $A = \{a_1, \ldots, a_n\}$.

On appelle **enveloppe convexe** de A l'ensemble des barycentres de ses points à cæfficients positifs. Notons-la Conv(A).

- 1. Montrer que $K=\left\{(\lambda_1,\ldots,\lambda_n)\in[0,1]^n,\;\sum_{i=1}^n\lambda_i=1\right\}$ est une partie compacte de $\mathbb{R}^n.$
- 2. En déduire que Conv(A) est compacte.

Solution de 29:

- 1. Fermé (image réciproque continue d'une fermé) et borné est dimension finie.
- 2. Image continue de K.

Diamètre d'une partie bornée

Soit $(E,\|\cdot\|)$ un \mathbb{K} -espace vectoriel normé et A une partie non vide et bornée de E.

- 1. Justifier l'existence de $D = \sup \{||x y||, (x, y) \in A^2\}$. On dit que D est le diamètre de A.
- 2. Démontrer que si A est compacte, alors il existe $(a,b) \in A^2$ tel que D = ||a-b||.
- 3. Soit $a \in E$ et $r \in \mathbb{R}_+^*$. Déterminer le diamètre de la boule ouverte de centre a et de rayon r.

Solution de 30 : Diamètre d'une partie bornée

- 1. Partie non vide majorée de \mathbb{R} car A est borné.
- 2. $(x,y) \mapsto ||x-y||$ est un fonction continue (car lipschitzienne, en prenant la norme produit sur A^2) sur le compact A^2 donc atteint un maximum.
- 3. 2r: par IT, $||x-y|| \le 2r$ et il est facile de voir que cette borne est atteinte.
- Soit (u_n) une suite convergente dans un espace vectoriel normé de dimension finie $(E,\|\cdot\|)$, ℓ sa limite. Montrer que $\{u_n,\ n\in\mathbb{N}\}\cup\{\ell\}$ est compact.

Solution de 31:

Soit $K = \{u_n, n \in \mathbb{N}\} \cup \{\ell\}$. On montre que K est une partie fermée et bornée de E. La suite étant convergente, elle est bornée donc K l'est.

Si $x \notin K$, $u_n \not\to x$ donc on a $\varepsilon > 0$ tel que à partir d'un certain rang N, $u_n \notin B(x,\varepsilon)$, et alors, nécessairement, $\ell \notin B(x,\varepsilon)$.

Puis, comme $x \notin K$, en prenant ε' strictement inférieur à ε et au minimum des $||x - u_n||$ pour $n \in [0, N-1]$, on aura $K \cap B(x, \varepsilon') = \emptyset$ donc cK est ouvert et K est fermé.

Soit $f: E \to \mathbb{R}$ continue, où E est un \mathbb{K} -espace vectoriel normé de dimension finie, telle que $f(x) \xrightarrow[\|x\| \to +\infty]{} +\infty$. Montrer que f atteint sur E un minimum global.

Solution de 32:

On a $A \in \mathbb{R}$ tel que si $||x|| \ge A$, $f(x) \ge f(0_E) + 1$. Puis f atteint un minimum sur le compact $\overline{B}(0_E, A)$ qui est en fait global.

Soit $(E, \|\cdot\|)$ un espace vectoriel normé et K un compact non vide de E. Soit $f: K \to K$ une application vérifiant :

$$\forall (x,y) \in K, \ x \neq y \Rightarrow \|f(x) - f(y)\| < \|x - y\|.$$

- 1. (a) Montrer que f admet au plus un point fixe dans K.
 - (b) Montrer que f admet un unique point fixe dans K, que l'on notera a. On pourra étudier sur K la fonction $\varphi: x \mapsto \|f(x) x\|$.
- 2. Soit $(x_n)_n$ une suite définie par $x_0 \in K$ et, pour tout $n \in \mathbb{N}$, $x_{n+1} = f(x_n)$. Démontrer que $(x_n)_n$ converge vers a. On s'intéressera à $||x_n - a||$ et on séparera deux cas suivant s'il existe n tel que $x_n = a$ ou non.

Solution de 33:

1. (a) Si $a \neq b$ conviennent, ||a - b|| < ||a - b||.

(b) Soit $\varphi: x \mapsto ||f(x) - x||$. Elle est continue par opération (f l'est car lipschitzienne) sur un compact donc elle atteint un minimum en $a \in K$.

Si $f(a) \neq a$, alors $||f(f(a)) - f(a)|| = \varphi(f(a)) < ||f(a) - a|| = \varphi(a)$ ce qui est contradictoire. Donc m est un point fixe de f, le seul.

2. Par récurrence, pour tout $n \in \mathbb{N}$, $x_n \in K$.

S'il existe p tel que $x_p=a$, alors, par récurrence, a étant point fixe de f, pour tout $n\geqslant p$, $x_n=a$ donc $x_n\to a$.

Sinon, pour tout $n \in \mathbb{N}$, $x_n \neq a$ et $||x_{n+1} - a|| = ||f(x_n) - f(a)|| < ||x_n - a||$. Donc $(||x_n - a||)_n$ est positive et (strictement) décroissante, donc convergente vers $\ell \in \mathbb{R}^+$.

Mais $x \in K^{\mathbb{N}}$ possède une suite extraite $(x_{\varphi(n)})$ convergente vers $b \in K$.

Et $x_{\varphi(n)+1} = f(\varphi(n)) \to f(b)$ par continuité.

 $\operatorname{Puis} \left\| x_{\varphi(n)} - a \right\| \to \|b - a\| = \ell \text{ et } \left\| x_{\varphi(n)+1} - a \right\| \to \|f(b) - a\| = \ell.$

Si $a \neq b$, alors $\ell = ||f(b) - a|| = ||f(b) - f(a)|| < ||b - a|| = \ell$ ce qui est contradictoire.

Donc a = b et $||x_n - a|| \to \ell = ||b - a|| = 0$ donc $x_n \to a$.

Soit $E=\mathcal{C}([0,1],\mathbb{R}$ muni de la norme $\|\cdot\|_{\infty}$, $n\in\mathbb{N}$, F_n le sous-espace des fonctions polynomiales de degré au plus $n,f\in E$.

Montrer que la distance de f à F_n est atteinte : on a une fonction polynomiale $\phi_n \in F_n$ telle que

$$\left\|f-\phi_{n}\right\|_{\infty}=\operatorname{d}(f,F_{n})=\inf_{\phi\in F_{n}}\left\|f-\phi\right\|_{\infty}$$

Solution de 34:

 $||f||_{\infty} \in \{||f-\phi||_{\infty}, \phi \in F_n\}. \text{ Donc d}(f,F_n) \leqslant ||f||_{\infty}.$

On s'intéresse donc aux $\phi \in F_n$ telle que $\mathrm{d}(f,\phi) \leqslant \|f\|_{\infty}$.

Or l'intersection de boule fermée de centre f et de rayon $\|f\|_{\infty}$ et de F_n est un fermé borné dans F_n qui est de dimension fini, donc est compact.

L'application continue car lipschitzienne $\phi \mapsto \mathsf{d}(f,\phi)$ atteint un minimum sur $F_n \cap \overline{B}(f,\|f\|_\infty)$ qui est en fait global.

Soit $E=\mathbb{R}^n$ muni d'une norme $\|\|$ et A une partie non vide de E. On rappelle la définition de la distance d'un élément x_0 de E à une partie A de E, notée $d(x_0,A)$, par la formule $d(x_0,A)=\inf_{x\in A}\|x-x0\|$.

- 1. Supposons A compact. Montrer que pour tout $x_0 \in E$, il existe $y \in A$ tel que $d(x_0, A) = \|y x_0\|$.
- 2. Montrer que le résultat est encore vrai si on suppose seulement que ${\cal A}$ est fermé.
- 3. Montrer que l'application qui à x_0 associe $d(x_0,A)$ est continue sur E (sans aucune hypothèse sur A).
- 4. En déduire que si A est un fermé de E et B un compact de E tels que A et B sont disjoints, alors il existe une constante $\delta > 0$ telle que $\forall \ (a,b) \in A \times B, \ \|a-b\| \geqslant \delta.$
- 5. Montrer par un contre-exemple que le résultat est faux si on suppose seulement que A et B sont deux fermés disjoints.

Solution de 35:

Normes subordonnées matricielles

Soit $n \in \mathbb{N}^*$ et $\|\cdot\|$ une norme sur $\mathcal{M}_{n,1}(\mathbb{R})$. On note

$$S = \{X \in \mathcal{M}_{n,1}(\mathbb{R}), ||X|| = 1\}$$
 et $B = \{X \in \mathcal{M}_{n,1}(\mathbb{R}), ||X|| \le 1\}$.

- 1. Soit $A \in \mathcal{M}_n(\mathbb{R})$ fixée et f l'application de $\mathcal{M}_{n,1}(\mathbb{R})$ vers $\mathcal{M}_{n,1}(\mathbb{R})$ définie par $\forall X \in \mathcal{M}_{n,1}(\mathbb{R}), \ f(X) = AX$.
 - (a) Justifier que f est continue sur $\mathcal{M}_{n,1}(\mathbb{R})$.
 - (b) Démontrer que les ensembles

$$E_{1} = \left\{ \left\| AX \right\|, \ X \in S \right\}, \quad E_{2} = \left\{ \left\| AX \right\|, \ X \in B \right\} \quad \text{ et } \quad E_{3} = \left\{ \frac{\left\| AX \right\|}{\left\| X \right\|}, \ X \in \mathcal{M}_{n,1}(\mathbb{R}) \setminus \{0\} \right\}$$

admettent une borne supérieure.

(c) Démontrer que les trois sup sont égaux.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{R})$, on note N(A) ce sup commun.

- 2. Démontrer que N est une norme sur $\mathcal{M}_n(\mathbb{R})$.
- 3. Démontrer que pour tout $(A,B) \in \mathcal{M}_n(\mathbb{R})^2$, $N(AB) \leqslant N(A)N(B)$. On dit que N est la norme subordonnée à $\|\cdot\|$.
- 4. Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme $\|\cdot\|_{\infty}$ et on note N sa norme subordonnée.

Montrer que pour toute matrice
$$A \in \mathcal{M}_n(\mathbb{R})$$
, $N(A) = \max_{1 \leqslant i \leqslant n} \left(\sum_{j=1}^n |a_{i,j}| \right)$.

5. Soit $n \in \mathbb{N}^*$. On munit $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme $\|\cdot\|_1$ et on note N sa norme subordonnée.

Montrer que pour toute matrice
$$A \in \mathcal{M}_n(\mathbb{R})$$
, $N(A) = \max_{1 \leqslant j \leqslant n} \left(\sum_{i=1}^n |a_{i,j}| \right)$.

Solution de 36 : Normes subordonnées matricielles

- 1. (a) f est linéaire en dimension finie.
 - (b) E_1 et E_2 sont des images par des fonctions continues des compacts (fermés bornés en dimension finie) S et B, donc admettent et atteignent ds extremums : les bornes sup sont même des max.

$$E_3 = E_1 \operatorname{car} \frac{X}{\|X\|}$$
 est de norme 1.

(c) Vu la remarque précédente, on a déjà $\max E_3 = \max E_1$.

Puis $S \subset B$ donc $\max E_1 \leqslant \max E_2$.

Soit $X_0 \in B$ tel que $\|AX_0\| = \max E_2$. Alors on peut choisir $X_0 \neq 0$ (sinon, plus de problème, tout est nul!) et $\frac{X_0}{\|X_0\|} \in S$.

Donc
$$\max E_2 = \|X_0\| \left\|A\frac{X_0}{\|X_0\|}\right\| \leqslant 1 \times \max E_1.$$

2. On a déjà $N(A) \ge 0$.

Si N(A)=0, alors vu E_3 , pour tout $X\neq 0$, AX=0 donc $\operatorname{Ker} A=\mathcal{M}_{n,1}(\mathbb{R})$ et $A=0_n$.

Si $X \in S$, $\|\lambda AX\| = |\lambda| \|AX\|$ puis on passe au max avec $|\lambda| \geqslant 0$.

Puis si $X \in S$, $\|(A+B)X\| \leqslant \|AX\| + \|AX\|$ puis on passe aux max.

3. Si $X \in S$ tel que $BX \neq 0$, $\|(AB)X\| = \frac{\|A(BX)\|}{\|BX\|} \|BX\| \leqslant N(A)N(B)$, sinon on a quand même $\|(AB)X\| \leqslant N(A)N(B)$, puis on passe au max.

4. Si
$$X \in S$$
, $||AX||_{\infty} = \max_{i} \left(\sum_{j=1}^{n} |a_{i,j}x_{j}| \right) = \max_{i} \left(\sum_{j=1}^{n} |a_{i,j}| \right)$.

$$\text{5. Si } X \in S\text{, } \|AX\|_1 = \sum_{i=1}^n \left| \sum_{j=1}^n a_{i,j} x_j \right| \leqslant \sum_{i=1}^n \sum_{j=1}^n |a_{i,j} x_j| = \sum_{j=1}^n \left(\sum_{i=1}^n |a_{i,j}| \right) |x_j| \leqslant \max_{1 \leqslant j \leqslant n} \left(\sum_{i=1}^n |a_{i,j}| \right) \|X\|_1,$$

majorant atteint en prenant le vecteur de la base canonique correspondant au j pour lequel ce max est atteint.

6. Connexité par arcs

Démontrer qu'un cercle et qu'un segment ne peuvent pas être homéomorphes : il n'existe pas de bijection f entre les deux telle que f et f^{-1} soient continues.

Solution de 37:

Il suffit d'enlever un point qui n'est pas une borne du segment et on a une fonction continue dont l'image d'un connexe par arc ne l'est plus.

38 Étudier la connexité par arcs de $\mathcal{GL}_n(\mathbb{R})$, $\mathcal{GL}_n(\mathbb{C})$, et $\mathcal{O}_n(\mathbb{R})$.

Solution de 38:

- $\mathcal{GL}_n(\mathbb{R})$ n'est pas connexe par arcs car det $\mathcal{GL}_n(\mathbb{R}) = \mathbb{R}^*$ non connexe par arcs alors que det est continue.
- $\mathcal{GL}_n(\mathbb{C})$ est connexe par arcs : on montre que chaque matrice inversible peut être jointe continûment à I_n .

Pour cela, on trigonalise (on peut), $M=PTP^{-1}$. On note d_i les cœfficients diagonaux de T. Par connexité par arcs de \mathbb{C}^* , pour chaque $d_i (\neq 0)$, on a un chemin continu $\phi_i:[0,1]\to\mathbb{C}^*$ tel que $\phi_i(1)=d_i$ et $\phi_i(0)=1$.

On pose alors
$$A(t)=egin{pmatrix} \phi_1(t) & & (t\cdot t_{i,j}) \\ & \ddots & \\ 0 & & \phi_n(t) \end{pmatrix}$$
 .

 $\Phi:t\mapsto PA(t)P^{-1}$ continue par opérations, à valeurs inversibles, $\Phi(0)=I_n$ et $\Phi(1)=M$.

• $\mathcal{O}(n)$ n'est pas connexe par arcs car $\det \mathcal{O}(n) = \{\pm 1\}$ non connexe par arcs alors que det est continue.

Montrer que l'ensemble des matrices diagonalisables de $\mathcal{M}_n(\mathbb{K})$ est connexe par arcs.

Solution de 39:

L'ensemble des matrices diagonalisable est étoilé par rapport à la matrice diagonalisable 0_n .

40

Connexe par arcs \Rightarrow connexe

En utilisant une fonction indicatrice, montrer que si A partie d'un espace vectoriel normé est connexe par arcs, les seules parties de A à la fois ouvertes et fermées relativement à A sont \varnothing et A.

Lorsque c'est le cas, on parle d'ensemble connexe.

Solution de 40 : Connexe par arcs \Rightarrow connexe

Soit B une partie ouverte et fermée de A.

On montre que $\mathbb{1}_B$ est continue en passant par la définition : si $a \in B$, qui est un ouvert de A, on a un voisinage de a dans A inclus dans B sur lequel $\mathbb{1}_B(x) = 1 \xrightarrow[x \to a]{} \mathbb{1}_B(a) = 1$; si $a \in {}^cB$, qui est un ouvert de A, on a un voisinage de a dans A inclus dans cB sur lequel $\mathbb{1}_B(x) = 0 \xrightarrow[x \to a]{} 0\mathbb{1}_B(a) = 0$.

Mais alors, comme A est connexe par arcs, $\mathbb{1}_B(A) \in \mathcal{P}(\{0,1\})$ l'est donc $\mathbb{1}_B$ est constante et donc $B = \emptyset$ ou B = A.

Théorème de Darboux

Soit I un intervalle ouvert de $\mathbb R$ et soit $f:I\to R$ une application dérivable. Notons $A=\{(x,y)\in I\times I, x< y\}.$

- 1. Démontrer que A est une partie connexe par arcs de \mathbb{R}^2 .
- 2. Pour $(x,y)\in A$, posons $g(x,y)=\frac{f(y)-f(x)}{y-x}$. Démontrer que $g(A)\subset f'(I)\subset \overline{g(A)}$.
- 3. Démontrer que f'(I) est un intervalle, autrement dit, f' a la propriété des valeurs intermédiaire.

Solution de 41 : Théorème de Darboux

- 1. A est convexe, donc connexe par arcs.
- 2. Soit $z \in g(A)$. Alors il existe $(x,y) \in A$ tel que $z = g(x,y) = \frac{f(x) f(y)}{x y}$. Par le théorème des accroissements finis, il existe $a \in I$ tel que $z = g(x,y) = \frac{f(x) f(y)}{x y} = f'(a)$ et donc $z \in f'(I)$. D'autre part, soit $z = f'(a) \in f'(I)$. Soit (b_n) une suite de I qui tend vers a par valeurs supérieures. Alors, on a par la définition de la dérivée en a que $g(a,b_n) \to f'(a)$. Mais $g(a,b_n) \in g(A)$, et donc $z \in g(A)$.
- 3. g(A) est un connexe par arcs de \mathbb{R} , donc un intervalle. Ainsi, f'(I), qui est compris entre un intervalle et l'adhérence d'un intervalle, est lui-même un intervalle.