CONCOURS COMMUN INP 2021 CORRIGÉ DE MATHÉMATIQUES II- MP

m.laamoum@gmail.com

EXERCICE

Q1. Soit $A = (a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}} \in (\mathcal{D}_n(\mathbb{R}))^{\perp}$ donc pour toute matrice $D = \text{diag } (\alpha_1, ..., \alpha_n)$ de $\mathcal{D}_n(\mathbb{R})$ on a Tr(D.A) = 0.

Comme $D.A = (\alpha_i a_{i,j})_{\substack{1 \leq i \leq n \\ 1 \leq j \leq n}}$ alors $\sum_{i=1}^n \alpha_i a_{i,i} = 0$, en particulier pour les matrice $E_{i,i}$ (dont tous les coefficients sont nuls, sauf celui d'indice (i,i) qui vaut 1) on obtient $a_{i,i} = 0 \quad \forall i \in \llbracket 1,n \rrbracket$. Donc A est une matrice de diagonale nulle. Réciproquement les matrice de diagonale nulle sont évidement dans $(\mathcal{D}_n(\mathbb{R}))^{\perp}$. Ainsi

$$\left(\mathcal{D}_n(\mathbb{R})\right)^{\perp} = \left\{ A = \left(a_{i,j}\right)_{\substack{1 \le i \le n \\ 1 \le j \le n}} \in \mathcal{M}_n(\mathbb{K}) , a_{i,i} = 0 \ \forall i \in \llbracket 1, n \rrbracket \right\}$$

PROBLÈME : Théorème de décomposition de Dunford Partie I - Quelques exemples Q2.

- On vérifie facilement que :
 - Si A est diagonalisable , par unicité , la décomposition de Dunford de A est $(A, 0_n)$.
 - Si A est nilpotente , par unicité , la décomposition de Dunford de A est $(0_n,A)$.
- Une matrice trigonalisable admet un polynôme caractéristique scindé sur $\mathbb K$, donc elle admet une décomposition de Dunford.
- Le couple $\left(\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \cdot \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \right)$ n'est pas la décomposition de Dunford de la matrice $\begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$, car elles ne commutent pas.
- **Q3.** Soit $A = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, on a $\chi_A(X) = X^2 + 1$, qui n'est pas scindé sur $\mathbb R$, donc A n'admet pas de décomposition de Dunford dans $\mathcal M_2(\mathbb R)$.
- **Q4.** Soit la matrice $A = \begin{pmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & -5 \end{pmatrix}$.

Ona

$$\chi_A(X) = \begin{vmatrix} X - 3 & 0 & -8 \\ -3 & X + 1 & -6 \\ 2 & 0 & X + 5 \end{vmatrix}$$
$$= (X+1) \begin{vmatrix} X - 3 & -8 \\ 2 & X + 5 \end{vmatrix}$$
$$= (X+1)^3$$

Donc A admet une décomposition de Dunford . On sait que $\chi_A = \chi_D$, donc D admet -1 pour unique valeur propre , D est diagonalisable donc $D = -I_3$. Par suite N = A + I , qui est nilpotente d'indice 2 ($N^2 = 0_3$).

Q5. Application

On a A=D+N , avec $D=-I_3$ et N=A+I . Comme D.N=N.D alors $\exp(D+N)=(\exp D)(\exp N)$.

$$expD = exp(-I_{3.})$$

$$= \left(\sum_{k=0}^{+\infty} \frac{(-1)^k}{k!}\right) I_{3.}$$

$$= e^{-1}I_{3.}$$

Puisque $N^2=0_3$ alors $N^k=0_3$ pour $k\geq 2$ et

$$\exp N = I_{3.} + N$$

Ainsi

$$\exp A = e^{-1} (I_{3.} + N) = e^{-1} \begin{pmatrix} 5 & 0 & 8 \\ 3 & 1 & 6 \\ -2 & 0 & -3 \end{pmatrix}$$

Q6. Soit $A \in \mathcal{M}_n(\mathbb{K})$ telle que $A^2(A - I_n) = 0$. On multiplie cette dernière relation par $(A + I_n)$, on obtient $A^2(A^2 - I_n) = 0$ donc le polynôme X(X - 1) est annulateur de la matrice A^2 .

La matrice A^2 admet un polynôme annulateur scindé a racines simples donc elle est diagonalisable .

Posons $N = A - A^2$, on a alors $N^2 = A^2 (A - I_n)^2 = 0$, N est nilpotente.

 A^2 et N sont des polynômes en A, donc elles commutent .

Par unicite $(A^2,A-A^2)$ est la décomposition de Dunford de la matrice A .

Partie II - Un exemple par deux méthodes.

Soit la matrice
$$A = \begin{pmatrix} 3 & -1 & 1 \\ 2 & 0 & 1 \\ 1 & -1 & 2 \end{pmatrix}$$
.

On note u l'endomorphisme de \mathbb{R}^3 canoniquement associé à la matrice A.

Q7.

ullet Calculons le polynôme caractéristique de A:

1 est une valeur propre simple de A, donc dim $E_1(A)=1$, A est diagonalisable si et seulement si dim $E_2(A)=2$.

On a si
$$X \in E_2(A)$$
 alors $AX = 2X$, posons $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ donc

$$\begin{cases} x - y + z = 0 \\ 2x - 2y + z = 0 \\ x - y = 0 \end{cases}$$

ce qui donne x = y et z = 0 et $E_2(A) = \text{vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$ qui est de dimension 1. La matrice A n'est pas diagonalisable dans $\mathcal{M}_3(\mathbb{R})$.

• On a $\chi_u(X) = \chi_A(X) = (X-1)(X-2)^2$, le théorème du décomposition des noyaux donne $\ker \chi_u(u) = \ker(u - \mathrm{id}) \oplus \ker(u - 2\mathrm{id})^2$. Or $\chi_u(u) = 0$ (théorème de Cayley-Hamilton) donc $\ker \chi_u(u) = \mathbb{R}^3$, ainsi $\mathbb{R}^3 = \ker(u - \mathrm{id}) \oplus \ker(u - 2\mathrm{id})^2$.

 $\mathbf{Q8}.$

- On a
$$\ker(u - 2\mathrm{id}) = \mathrm{vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right\}$$
, prenons $e_2 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$.

- Soit $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker(u - \mathrm{id})$ alors $\begin{cases} 2x - y + z = 0 \\ 2x - y + z = 0 \end{cases}$, ce qui donne $x = 0, y = z$, prenons $e_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix}$ donc $\ker(u - \mathrm{id}) = \mathrm{vect}(e_1)$.

- On a $(A - 2I_3)^2 = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 1 & 0 \end{pmatrix}$, soit $\begin{pmatrix} x \\ y \\ z \end{pmatrix} \in \ker(u - 2\mathrm{id})^2$ alors $x - y = 0$ et $\ker(u - 2\mathrm{id})^2 = \mathrm{vect} \left\{ \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\}$ posons $e_3 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

On a $\det(e_1, e_2, e_3) = -1$, donc (e_1, e_2, e_3) est libre dans \mathbb{R}^3 , ainsi (e_1, e_2, e_3) est une base de \mathbb{R}^3 .

— Oa
$$u(e_1) = e_1$$
, $u(e_2) = 2e_2$ et $u(e_3) = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} = e_2 + 2e_3$. Ce qui donne $B = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

Q9. Posons
$$D_1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
 et $N_1 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$.

On vérifie que : $B = D_1 + N_1$, $D_1 \cdot N_1 = N_1 \cdot D_1$ et $N_1^2 = 0_3$. Donc (D_1, N_1) est la décomposition de Dunford de la matrice B.

A et B sont semblables,
$$A = P.B.P^{-1}$$
 avec $P = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ et $P^{-1} = \begin{pmatrix} -1 & 1 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 1 \end{pmatrix}$.

La décomposition de Dunford de la matrice A est (D, N) avec $D = PD_1P^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & -1 & 2 \end{pmatrix}$ et

$$N = PN_1P^{-1} = \begin{pmatrix} 1 & -1 & 1 \\ 1 & -1 & 1 \\ 0 & 0 & 0 \end{pmatrix}.$$

Q10.

— Posons $F(X) = \frac{1}{(X-1)(X-2)^2}$, la décomposition en éléments simples de F s'écrit :

$$F(X) = \frac{a}{X-1} + \frac{b}{X-2} + \frac{c}{(X-2)^2}$$

 $a=[(X-1)F(X)]_{X=1}=1$, $c=\left[(X-2)^2F(X)\right]_{X=2}=1$, le calcul de la limite en $+\infty$ de xF(x) de deux façons donne 0=a+b , donc b=-1. Ainsi

$$F(X) = \frac{1}{X-1} + \frac{-1}{X-2} + \frac{1}{(X-2)^2}$$

— L'expression précédente devient : $F(X) = \frac{1}{X-1} + \frac{3-X}{(X-2)^2}$, on la multiplie par $(X-1)(X-2)^2$ on obtient

$$1 = (X - 2)^2 - (3 - X)(X - 1)$$

ainsi U = X - 3 et V = 1.

Q11.

— La relation $(X - 1)U(X) + (X - 2)^{2}V(X) = 1$ donne

$$U(u) \circ (u - \mathrm{id}) + V(u) \circ (u - 2\mathrm{id})^2 = \mathrm{id}$$

Donc p(x) + q(x) = x pour tout x de \mathbb{R}^3 .

— D'après la question 7 on a $\mathbb{R}^3 = \ker(u - \mathrm{id}) \oplus \ker(u - 2\mathrm{id})^2$. Soit $x \in \mathbb{R}^3$, il existe deux vecteurs uniques : $x_1 \in \ker(u - \mathrm{id})$ et $x_2 \in \ker(u - 2\mathrm{id})^2$ tels que $x = x_1 + x_2$.

On a $q(x_1)=U(u)$ $((u-\mathrm{id})(x_1))=0$ donc $p(x_1)=x_1$ et $p(x_2)=0$, de même on a $q(x_2)=x_2$ et $q(x_1)=0$

Ainsi p est la projection sur $\ker(u-id)$ parallèlement à $\ker(u-2id)^2$ et q est la projection sur $\ker(u-2id)^2$ parallèlement à $\ker(u-id)$.

Q12. On a $d(e_1) = p(e_1) + 2q(e_1) = e_1$, $d(e_2) = 2e_2$ et $d(e_3) = 2e_3$, donc la matrice de d dans la base (e_1, e_2, e_3) s'écrit $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$, ainsi d est diagonalisable. d est un polynôme en u car p et q le sont .

Posons n = u - d, la matrice de n dans la base (e_1, e_2, e_3) s'écrit $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$, donc n est nilpotente, d et n commutent car ce sont des polynômes de u. Si on note N et D les matrices, respectivement, de n et u dans la

base canonique de \mathbb{R}^3 . De ce qui précède (D,N) est la décomposition de Dunford de la matrice A . On a d=p+2q=id+q donc

$$d = id + U(u) \circ (u - id)$$
$$= id + (u - 3id) \circ (u - id)$$
$$= u^2 - 4u + 4id$$

et $n = u - d = -u^2 + 5u - 4id$, ce qui donne

$$D = A^2 - 4A + 4I_3$$
 et $N = -A^2 + 5A - 4I_3$

Partie III - Une preuve de l'unicité de la décomposition

Q13. v commute avec u donc avec $u - \lambda_i$ id , on en déduit que $E_{\lambda_i}(u) = \ker(u - \lambda_i$ id) est stable par v . Soit $v_i = v_{|E_{\lambda_i}(u)}$.

Comme v est diagonalisable, donc le polynôme minimal π_v est scindé a racines simples , π_v annule v_i par suite v_i est diagonalisable , soit B_i une base de $E_{\lambda_i}(u)$ formée de vecteurs propres de v_i , qui sont aussi et des vecteurs propres de v . Or u est diagonalisable alors $E=\bigoplus_{i=1}^p E_{\lambda_i}(u)$, donc $\bigcup_{i=1}^p B_i$ est une base de E,formée de vecteurs qui sont propres à la fois a u et a v, c'est une base commune de diagonalisation pour u et v.

Q14. Soient u et v les endomorphismes canoniquement associés, respectivement, à A et B, donc ils sont diagonalisables et commutent, il existe donc une base commune de diagonalisation pour u et v. Dans cette base u-v est diagonalisable. Ce qui montrer que la matrice A-B est diagonalisable.

Q15. Si A et B sont deux matrices nilpotentes; d'indice de nilpotence, respectivement, p et q. A et B commutent donc,

$$(A-B)^{p+q} = \sum_{k=0}^{p+q} {p+q \choose k} A^k (-B)^{p+q-k}$$

remarquons que si $k \ge p$ alors $A^k = 0_n$ et k < p alors p + q - k > q et $B^{p+q-k} = 0_n$, ainsi $(A - B)^{p+q} = 0_n$, A - B est donc nilpotente.

Q16. Si $A \in \mathcal{M}_n(\mathbb{K})$ est à la fois diagonalisables et nilpotente, donc A est semblable à une matrice diagonale D, cette dernière est aussi nilpotente, donc $D = 0_n$ par suite $A = 0_n$.

Q17. Soit (D, N) et (D', N') vérifiant les conditions (1), (2), (3), (4) et tel que D, N, D' et N soient des polynômes en A.

On a : D+N=D+N' donc D-D'=N'-N . Or D commute avec D' et N commute avec N', car elles sont des polynômes en A, donc D-D' est diagonalisable et N'-N est nilpotente , la question Q16 donne D=D' et N'=N , d'où l'unicité de (D,N).

Part - IV Non continuité de l'application A → D

Q18. \mathcal{D} n'est pas stable par addition :

n=2, soit $A=\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ et $B=\begin{pmatrix} -1 & 1 \\ 0 & -2 \end{pmatrix}$, elles sont diagonalisables mais A+B ne l'est pas car elle est nilpotente et non nulle.

Dans le cas général on prend deux matrices par blocs : $\begin{pmatrix} A & 0 \\ 0 & 0 \end{pmatrix}$ et $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$.

Si P est une matrice inversible, l'application $M \mapsto PMP^{-1}$ est linéaire en dimension finie donc elle est continue.

Q19. Soit $M \in \mathcal{M}_n(\mathbb{C})$ montrons que M est limite d'une suite d'éléments de \mathcal{D} .

Le polynôme caractéristique de M est scindé dans \mathbb{C} , donc M est trigonalisable , il existe P une matrice inversible et T une matrice triangulaire telles que $M = P.T.P^{-1}$. La diagonale de T, $(\lambda_1, \lambda_2, \ldots, \lambda_n)$ est constituée des valeurs propres de M.

Posons $T_k = T + \operatorname{diag}(\frac{1}{k}, \frac{2}{k}, ..., \frac{n}{k})$. Les valeurs propres de T_k sont $(\lambda_1 + \frac{1}{k}, \lambda_2 + \frac{2}{k}, ..., \lambda_n + \frac{1}{k})$

Soit $(i,j) \in [1,n]^2$, $i \neq j$. Si $\lambda_i = \lambda_j$ alors $\lambda_i + \frac{i}{k} \neq \lambda_j + \frac{j}{k}$.

Si $\lambda_i \neq \lambda_j$ et $\lambda_i + \frac{i}{k} = \lambda_j + \frac{j}{k}$, alors $|\lambda_i - \lambda_j| = \frac{|i-j|}{k} \leq \frac{1}{k}$, à partir d'un cerain rang k_0 on a

 $\frac{1}{k}<\min\left\{\left|\lambda_l-\lambda_m\right|,(l,m)\in[\![1,n]\!]\;\lambda_l\neq\lambda_m\right\}$, donc pour $k\geq k_0$ on a

 $\lambda_i + \frac{i}{k} \neq \lambda_j + \frac{j}{k}$. Ainsi pour $k \geq k_0$; T_k admet n valeurs propres distinctes donc elle est diagonalisable.

De plus on a $T_k \underset{k \to +\infty}{\to} T$. L'application $A \mapsto PAP^{-1}$ est continue donc $PT_kP^{-1} \underset{k \to +\infty}{\to} PTP^{-1} = A$.

Ce qui prouve que \mathcal{D} est dense dans $\mathcal{M}_n(\mathbb{C})$.

Q20. Si (D, N) est la décomposition de Dunford de A, on a $\varphi(A) = D$.

Si $A \in \mathcal{D}$ alors (D, N) = (A, 0) donc $\varphi(A) = A$ et φ est l'application identité sur \mathcal{D} .

Supposons que φ est continue, soit A une matrice non diagonalisable. On sait que \mathcal{D} est dense dans $\mathcal{M}_n(\mathbb{C})$ donc il existe une suite (M_k) de matrices diagonalisables qui converge vers A. On a $\varphi(M_k) = M_k \underset{k \to +\infty}{\to} A$, φ est continue donc $\varphi(M_k) \underset{k \to +\infty}{\to} \varphi(A)$ ainsi $\varphi(A) = A$ et A est diagonalisable, absurde donc φ n'est pas continue.

FIN