Mines-Ponts 2006 MATH. I MP

Pour $\mathbb{K} = \mathbb{R}$ ou \mathbb{C} , on note $\mathcal{M}_{n,l}(\mathbb{K})$ l'ensemble des matrices à n lignes et l colonnes à coefficients dans K. Un élément de $\mathcal{M}_{n,l}(\mathbb{R})$ sera considéré comme élément de $\mathcal{M}_{n,l}(\mathbb{C})$. Dans la suite, on identifie les matrices carrées (respectivement les matrices colonnes) et les endomorphismes (respectivement les vecteurs) canoniquement associés dans \mathbb{C}^n : par exemple, on note par la même lettre une matrice Tde $\mathcal{M}_{n,n}(\mathbb{R})$ et l'endomorphisme de \mathbb{C}^n dont T est la matrice dans la base canonique de \mathbb{C}^n .

Si $M \in \mathcal{M}_{n,\ell}(\mathbb{K})$ et $x \in \mathbb{K}^{\ell}$, $(Mx)_i$ désigne la *i*-ième composante du vecteur $Mx \in \mathbb{K}^n$. On note

$$I_n$$
 la matrice identité de $\mathcal{M}_{n,n}(\mathbb{C})$. Pour $x=(x_1,\ldots,x_n)\in\mathbb{K}^n$, on note
$$\|x\|_1=\sum_{i=1}^n|x_i|\text{ et }\|M\|_1=\sup_{x\in\mathbb{K}^n\setminus\{0\}}\frac{\|Mx\|_1}{\|x\|_1},$$

pour $M \in \mathcal{M}_{n,n}(\mathbb{K})$, la norme matricielle subordonnée

Définition 1 On dit qu'une matrice $M \in \mathcal{M}_{n,l}(\mathbb{R})$, de coefficients notés $(m_{i,j}, 1 \leq i \leq n, 1 \leq j \leq l)$, est positive (respectivement strictement positive), ce que l'on note $M \geqslant 0$ (respectivement M > 0), lorsque tous ses coefficients sont positifs (respectivement strictement positifs):

$$m_{i,j} \ge 0 \ (resp \ . \ m_{i,j} > 0) \ pour \ tout \ (i,j) \in \{1, ..., n\} \times \{1, ..., l\}.$$

 $m_{i,j} \geqslant 0 \ (resp.\ m_{i,j} > 0) \ pour \ tout \ (i,j) \in \{1,\ldots,n\} \times \{1,\ldots,l\}.$ Pour deux matrices M et N de $\mathcal{M}_{n,l}(\mathbb{R}),\ M \geqslant N$ (respectivement M > N) lorsque $M - N \geqslant 0$ (respectivement M-N>0).

Une matrice $M \in \mathcal{M}_{n,n}(\mathbb{R})$ de coefficients notés $(m_{i,j}, 1 \leq i, j \leq n)$ est dite stochastique lorsqu'elle est positive et que de plus

$$\sum_{i=1}^{n} m_{i,j} = 1, \ pour \ tout \ j \in \{1, ..., n\}.$$

On définit les ensembles B, B^+ et Σ par :

$$B = \{ x \in \mathbb{R}^n \mid x \geqslant 0 \text{ et } x \neq 0 \}, B^+ = \{ x \in \mathbb{R}^n \mid x > 0 \}, \Sigma = \{ x \in \mathbb{R}^n \mid ||x||_1 = 1 \}.$$

Nous souhaitons montrer le résultat suivant :

Théorème 1 (Perron-Frobenius) Soit $T \in \mathcal{M}_{n,n}(\mathbb{R})$ stochastique telle que $(I_n + T)^{n-1} > 0$. Il existe un vecteur strictement positif x_0 satisfaisant $Tx_0 = x_0$. Toutes les valeurs propres de T sont de module inférieur à 1 et pour tout vecteur y de $\Sigma \cap B$,

$$\lim_{k \to +\infty} \frac{1}{k} \sum_{j=0}^{k-1} T^{kj} y = \frac{x_0}{\|x_0\|_1}.$$

Les deux parties sont dans une large mesure indépendantes.

Un vecteur propre strictement positif

On suppose que T est un élément positif de $\mathcal{M}_{n,n}(\mathbb{R})$ tel que $P = (I_n + T)^{n-1}$ est strictement positive.

1) Montrer que pour tout $x \in B$, l'ensemble $\Gamma_x = \{\theta \in \mathbb{R}^+ \mid \theta x \leqslant Tx\}$ est non vide, fermé et borné.

On note $\theta(x)$ son plus grand élément.

2) Montrer que pour tout $x \in B$, on peut calculer $\theta(x)$ de la manière suivante :

$$\theta(x) = \min \left\{ \frac{(Tx)_i}{x_i} \mid 1 \leqslant i \leqslant n \text{ et } x_i \neq 0 \right\}.$$

On note θ l'application de B dans \mathbb{R}^+ qui à x associe $\theta(x)$.

- 3) Montrer que pour tout $\alpha > 0$ et tout $x \in B$, $\theta(\alpha x) = \theta(x)$.
- 4) Montrer que $P(B) \subset B^+$.
- 5) Montrer que pour tout $x \in B$, $\theta(Px) \geqslant \theta(x)$ et $\theta(Px) > 0$.

- 6) Soit $x \in B$ un vecteur propre de T. Montrer que $\theta(Px) = \theta(x)$.
- 7) Soit $x \in B$ tel que $\theta(Px) = \theta(x)$, montrer que x est un vecteur propre de T pour la valeur propre $\theta(x)$.
- 8) Soit $C = B \cap \Sigma$. Montrer que l'application θ est continue de P(C) dans \mathbb{R} .
- 9) Justifier l'existence de $x_0 \in P(C)$ tel que $\theta(x_0) = \sup_{x \in P(C)} \theta(x)$.
- 10) Montrer que $\sup_{x \in P(C)} \theta(x) \geqslant \sup_{x \in C} \theta(x)$.
- 11) Montrer que $\sup_{x \in B} \theta(x) = \sup_{x \in C} \theta(x)$.
- 12) Montrer que $\sup_{x \in C} \theta(x) = \sup_{x \in P(C)} \theta(x)$ et que $\theta(x_0) = \sup_{x \in C} \theta(x)$. On pose $\theta_0 = \theta(x_0)$.
- 13) Montrer que x_0 est un vecteur propre, strictement positif, de T pour la valeur propre θ_0 et que $\theta_0 > 0$.

II Une méthode d'approximation

On suppose maintenant que T est stochastique et telle que $P = (I_n + T)^{n-1}$ est strictement positive.

Pour un vecteur $x=(x_1,\ldots,x_n)$ de \mathbb{C}^n , on note x^+ le vecteur $(|x_1|,\ldots,|x_n|)$, où |z| est le module du complexe z. Pour tout entier $k\geqslant 1$, on pose $R_k=\frac{1}{k}\sum_{i=0}^{k-1}T^i$.

- 14) Soit $\theta \in \mathbb{C}$ et $x \in \mathbb{C}^n$ un vecteur propre de T pour la valeur propre θ . Montrer que $|\theta| x^+ \leq Tx^+$.
- 15) En déduire que $|\theta| \leq \theta_0$.
- 16) Montrer que $|\theta| \|x^+\|_1 \leqslant \|x^+\|_1$ et en déduire que $|\theta| \leqslant 1$.
- 17) En déduire $\theta_0 = 1$.
- 18) Montrer que pour tout $j \ge 1$, T^j et R_j sont des matrices stochastiques.
- 19) Établir, pour tout $k \ge 1$, les inégalités suivantes :

$$||T^k||_1 \leqslant 1 \text{ et } ||R_k||_1 \leqslant 1.$$

- 20) Montrer que pour tout $k \ge 1$, $||TR_k R_k||_1 \le \frac{2}{k}$.
- 21) Soit $x \in \mathbb{C}^n$, montrer que la suite $(R_k x, k \ge 1)$ a au moins une valeur d'adhérence.
- 22) Soit y une valeur d'adhérence de la suite $(R_k x, k \ge 1)$, montrer que Ty = y et que pour tout $k \ge 1$, $R_k y = y$.
- 23) Soit y et z deux valeurs d'adhérence de $(R_k x, k \ge 1)$, montrer pour tous les entiers m et l, l'identité suivante :

$$y - z = R_l (R_m x - z) - R_m (R_l x - y).$$

- 24) Montrer que la suite $(R_k x, k \ge 1)$ a exactement une valeur d'adhérence.
- 25) Montrer qu'il existe une matrice R telle que $Rx = \lim_{k \to +\infty} R_k x$ pour tout $x \in \mathbb{C}^n$ et $\lim_{k \to +\infty} ||R_k R||_1 = 0$.
- 26) Montrer que T et R commutent.
- 27) Montrer que RT = R et $R^2 = R$.
- 28) Caractériser R en fonction de $\operatorname{Ker}(T-I_n)$ et $\operatorname{Im}(T-I_n)$.
- 29) On admet que $\text{Ker}(T I_n)$ est de dimension 1. Pour $x \in B$, expliciter Rx en fonction de $||x||_1$, $||x_0||_1$ et x_0 .

FIN DU PROBLÈME

Ce théorème possède d'innombrables applications. L'une des dernières est son utilisation dans le classement (PageRank) des pages Web effectué par le plus connu des moteurs de recherche.