chapitreXIII

Régularité des suites et séries de fonctions

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} , I est un intervalle de \mathbb{R} contenant au moins deux points, X une partie non vide \mathbb{R} .

Suites de fonctions

1 Intégration sur un segment

Théorème : Interversion limite et intégrale

Si $a,b\in\mathbb{R}$, $f:[a,b]\to\mathbb{K}$ et $(f_n)_n$ une suite de fonction de $\mathbb{K}^{[a,b]}$ tel que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur [a, b]
- **H2** La suite de fonctions $(f_n)_n$ converge uniformément vers f sur [a,b]

alors

- C1 f est continue sur [a,b]
- **C2** $\int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$.

Méthode: Pour montrer qu'on n'a pas convergence uniforme...

Il suffit qu'on n'ait pas $\int_a^b f_n(t) dt \xrightarrow[n \to +\infty]{} \int_a^b f(t) dt$.

Théorème : Convergence uniforme de primitive

Soient $f: I \to \mathbb{K}$ et $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $a \in I$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur I.
- **H2** La suite de fonctions $(f_n)_n$ converge uniformément vers f sur tout segment de I.

Alors on pose $F_n: x \mapsto \int_a^x f_n(t) dt$ l'unique primitive de f_n qui s'annule en a et

- C1 f est continue sur I donc $F: x \mapsto \int_a^x f(t) dt$ unique primitive de f qui s'annule en a
- **C2** $(F_n)_n$ converge uniformément vers F sur tout segment de I.

2 Dérivation

Théorème : Interversion limite et dé-

Soient $f:I\to \mathbb{K}$ et $(f_n)_n$ une suite de fonction de $\mathbb{K}^I.$ On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^1 sur I.
- **H2** La suite $(f_n)_n$ converge simplement vers f sur I.
- **H3** La suite $(f'_n)_n$ converge uniformément sur tout segment de I vers une fonction h.

Alors

- **C1** f est de classe \mathscr{C}^1 sur I.
- **C2** f' = h c'est-à-dire $(\lim f_n)' = \lim f'_n$.
- **C3** $(f_n)_n$ converge uniformément vers f sur tout segment de I.

Théorème : Généralisation à la classe \mathscr{C}^k

Soit $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $p \in \mathbb{N}^*$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^p sur I.
- **H2** Pour tout $k \in [0, p-1]$, la suite $\left(f_n^{(k)}\right)_n$ converge simplement vers une fonction g_k sur I.
- **H3** La suite $(f_n^{(p)})_n$ converge uniformément sur tout segment de I vers une fonction g_p .

Alors

- **C1** $f = g_0$ est de classe \mathscr{C}^p sur I.
- **C2** Pour tout $k \in [0, p]$, $f^{(k)} = g_k$ c'est-à-dire $(\lim f_n)^{(k)} = \lim f_n^{(k)}$.
- **C3** Pour tout $k \in [0, p]$, $\left(f_n^{(k)}\right)_n$ converge uniformément sur tout segment de I.

Théorème : Généralisation à la classe \mathscr{C}^{∞}

Soit $(f_n)_n$ une suite de fonction de $\mathbb{K}^I.$ On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^{∞} sur I.
- **H2** La suite $(f_n)_n$ converge simplement vers une fonction f sur I.
- **H3** Pour tout $k \in \mathbb{N}^*$, la suite $\left(f_n^{(k)}\right)_n$ converge uniformément sur tout segment de I vers une fonction g_k .

Alors

- **C1** f est de classe \mathscr{C}^{∞} sur I.
- **C2** Pour tout $k \in \mathbb{N}^*$, $f^{(k)} = g_k$ c'est-à-dire $(\lim f_n)^{(k)} = \lim f_n^{(k)}$.

Les théorèmes sur les séries de fonctions se déduisent directement des théorèmes sur les suites de fonctions en les appliquant aux suites de sommes partielles.

1 Intégration sur un segment

Théorème : Interversion sérieintégrale sur un segment

Si $a,b\in\mathbb{R}$, $(f_n)_n$ une suite de fonction de $\mathbb{K}^{[a,b]}$ tel que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur [a, b]
- **H2** La série de fonctions $\sum f_n$ converge uniformément vers f sur [a,b]

alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est continue sur [a, b].
- C2 $\sum \int_a^b f_n(t) dt$ converge.
- **C3** $\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt.$

2 Primitive

Théorème : Interversion série et primitive

Soient $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $a \in I$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur I.
- **H2** La série de fonctions $\sum f_n$ converge uniformément vers $f = \sum_{n=0}^{+\infty} f_n$ sur tout segment de I.

Alors on pose $F_n: x \mapsto \int_a^x f_n(t) dt$ l'unique primitive de f_n qui s'annule en a et

- **C1** f est continue sur I donc $F: x \mapsto \int_a^x f(t) dt$ unique primitive de f qui s'annule en a existe bien,
- **C2** La série de fonctions $\sum F_n$ converge uniformément sur tout segment de I et $F = \sum_{n=0}^{+\infty} F_n$.

3 Classe \mathscr{C}^p

Théorème : Classe \mathscr{C}^p d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $p \in \mathbb{N}^*$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^p sur I.
- **H2** Pour tout $k \in [0, p-1]$, la série de fonctions $\sum f_n^{(k)}$ converge simplement sur I.
- **H3** La série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^p sur I.
- **C2** Pour tout $k \in [0, p]$, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.
- **C3** Pour tout $k \in [0, p]$, $\sum f_n^{(k)}$ converge uniformément sur tout segment de I.

Théorème : Classe \mathscr{C}^{∞} d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de $\mathbb{K}^I.$ On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^{∞} sur I.
- **H2** La série de fonctions $\sum f_n$ converge simplement sur I.
- **H3** Pour tout $k \in \mathbb{N}^*$, la série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^{∞} sur I.
- **C2** Pour tout $k \in \mathbb{N}$, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.