CHAPITREVII

Continuité des fonctions numériques (MPSI)

TABLE DES MATIÈRES

VII CONTINUITÉ DES FONCTIONS NUMÉRIQUES (MPSI)

	Continuite	1
- 1	Définition	1
	Cas des fonctions à valeurs réelles	
I	Uniforme continuité	3
n i	Fonctions linechitziennes	

CONTINUITÉ

1 Définition

Définition

Soit $f: I \to \mathbb{K}$, $a \in I$.

f est dite continue en a si et seulement si $f(x) \xrightarrow[x \to a]{} f(a)$, si et seulement si

$$\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall x \in I, \ |x - a| \leq \eta \Longrightarrow |f(x) - f(a)| \leq \varepsilon.$$

Soit $f: I \to \mathbb{K}$. f est dite **continue sur** I lorsque f est continue en tout point de I.

On note $\mathscr{C}(I,\mathbb{R})$ ou $\mathscr{C}(I)$ ou $\mathscr{C}^0(I,\mathbb{R})$ ou $\mathscr{C}^0(I)$ l'ensemble de telles fonctions.

Remarques

R1 - Ainsi, f n'est pas continue en a si et seulement si

$$\exists \varepsilon > 0, \ \forall \eta > 0, \ \exists x \in I, \ |x - a| \leq \eta \text{ et } |f(x) - f(a)| > \varepsilon.$$

R2-f est continue en a si et seulement si f est définie en a et a une limite finie en a.

R3 – f est continue en a si et seulement si $\mathfrak{Re}(f)$ et $\mathfrak{Im}(f)$ le dont.

Propriété : Caractérisations séquentielles

f est continue en $a \Longleftrightarrow \forall (a_n) \in I^{\mathbb{N}} \mid a_n \to a, \ f(a_n) \to f(a).$ f est continue en $a \Longleftrightarrow \forall (a_n) \in I^{\mathbb{N}} \mid a_n \to a, \ (f(a_n))$ converge.

Remarques

R1 – Une combinaison linéaire, un produit, un quotient, une composée de fonctions continues l'est encore. $\mathscr{C}(I,\mathbb{K})$ est une sous-algèbre de $(\mathbb{K}^I,+,\times,\cdot)$.

R2 – Être continue en a est équivalent à être continue à gauche et à droite de a.

2 Cas des fonctions à valeurs réelles

Dans ce paragraphe, toutes les fonctions sont à valeurs réelles.

Théorème : Théorème des valeurs intermédiaires

Soit $f: I \to \mathbb{R}$ continue. Si $a, b \in I$ tels que a < b et $m \in [f(a) ; f(b)]$, alors il existe $c \in [a, b]$ tel que m = f(c).

Autrement dit, $[f(a) \stackrel{\leftrightarrow}{,} f(b)] \subset f([a,b])$.

Remarque

 $[f(a) \stackrel{\leftrightarrow}{,} f(b)]$ signifie [f(a), f(b)] ou [f(b), f(a)] selon la position relative de f(a) et f(b).

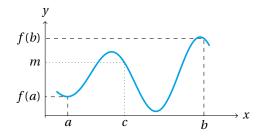


FIGURE 1 - Le théorème des valeurs intermédiaires

Remarque

La réciproque est fausse : on peut vérifier la propriété des valeurs intermédiaires sans être continu.

C'est le cas par exemple de la fonction f: $x \longmapsto f(x) = \begin{cases} \cos \frac{1}{x} & \text{si } x \neq 0 \\ 1 & \text{si } x = 0 \end{cases}$ discontinue en 0.

Corollaire : Extension du théorème des valeurs intermédiaires

Si $a,b \in \overline{\mathbb{R}}$ tels que a < b, $f:]a,b[\to \mathbb{R}$ continue sur]a,b[et admet des limites $\lim_{a^+} f$ à droite de a et $\lim_{b^-} f$ à gauche de b, alors pour tout $m \in \left| \lim_{a^+} f \stackrel{\cdot}{\to} \lim_{b^-} f \right|$, on a $c \in]a,b[$ tel que f(c)=m.

Autrement dit, $\left| \lim_{a^+} f \stackrel{\rightarrow}{,} \lim_{b^-} f \right| \subset f(a, b)$.

Exemple

Un polynôme de degré impair a toujours au moins une racine réelle.

En effet, comme on a des limites $\pm \infty$ ou $\mp \infty$ en $\pm \infty$, notre polynôme prend au moins une valeur positive et une valeurs négative sur \mathbb{R} .

Corollaire: Image continue d'un intervalle

L'image d'un intervalle par une fonction continue est un intervalle.

Autrement dit, si f est continue sur un intervalle I, alors f(I) est un intervalle.

Remarques

R2 - Le type de l'intervalle n'est pas conservé en général.

Théorème

Une fonction continue sur un segment est bornée et atteint ses bornes.

Ainsi, si $a, b \in \mathbb{R}$ tels que a < b et si f est continue sur le segment [a, b], alors on a $c, d \in [a, b]$ tels que $f(c) = \min_{[a, b]} f$ et $f(d) = \max f$.

Corollaire: Image continue d'un segment

L'image d'un segment par une fonction continue est un segment. Avec les notations précédentes, f étant continue sur [a,b],

$$f([a,b]) = \left[\min_{[a,b]} f, \max_{[a,b]} f\right] = \left[f(c), f(d)\right]$$

Propriété

Si f est continue et injective sur un intervalle I, f est strictement monotone sur I.

Théorème : Théorème de la bijection

Soit f continue et strictement monotone sur un intervalle I à valeurs réelles. Alors

- (i) f induit une bijection \tilde{f} de I sur J = f(I).
- (ii) \tilde{f}^{-1} est strictement monotone de même monotonie que f.
- (iii) \tilde{f}^{-1} est continue sur J.

Définition: Homéomorphisme

 $f: I \to J$ est appelé **homéomorphisme** lorsque f est bijective et bicontinue, c'est-à-dire f continue sur I et f^{-1} est continue sur J.

Le « théorème de la bijection » se reformule alors en

Théorème: Théorème de l'homéomorphisme

Toute fonction continue strictement monotone induit de I sur J = f(I) un homéomorphisme.

II UNIFORME CONTINUITÉ

La continuité dont on a parlé jusqu'à maintenant était une propriété locale : au voisinage d'un point a, si je me reproche de a, alors mon image par f se rapproche de f(a), ce qui s'écrit formellement :

$$\forall a \in I, \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| \leq \eta \Longrightarrow |f(x) - f(a)| \leq \varepsilon$$

Définition

Soit $f: I \to \mathbb{K}$. On dit que f est **uniformément continue** sur I si

$$\forall \, \varepsilon > 0, \ \exists \, \eta > 0, \ \forall \, x,y \in I, \ \left| x - y \right| \leqslant \eta \Longrightarrow \left| f(x) - f(y) \right| \leqslant \varepsilon$$

Cela impose que si x et y sont suffisamment proches, mais n'importe où dans I, alors f(x) et f(y) sont proches également. Ainsi, pour des fonctions à trop grandes variations, on pourra ne pas avoir uniforme continuité.

Propriété

Une fonction uniformément continue sur I est continue sur I. Réciproque fausse.

Démonstration

Si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall a, x \in I, |x - a| \leq \eta \Longrightarrow |f(x) - f(a)| \leq \varepsilon$$

alors

$$\forall a \in I, \forall \varepsilon > 0, \exists \eta > 0, \forall x \in I, |x - a| \leq \eta \Longrightarrow |f(x) - f(a)| \leq \varepsilon. \square$$

Propriété: Caractérisation séquentielle

f est uniformément continue sur I si et seulement si $\forall (x_n)_n, (y_n)_n \in I^{\mathbb{N}} \mid x_n - y_n \xrightarrow[n \to +\infty]{} 0, \ f(x_n) - f(y_n) \xrightarrow[n \to +\infty]{} 0.$

Remarque

N'apparaît pas dans le programme officiel, mais très utile pour démontrer qu'une fonction n'est pas uniformément continue.

Démonstration

- (\Rightarrow) Si f uniformément continue et $x_n y_n \xrightarrow[n \to +\infty]{} 0$ et $\varepsilon > 0$.
- On a $\eta > 0$ tell que $\forall x, y \in I$, $|x y| \leqslant \eta \Longrightarrow |f(x) f(y)| \leqslant \varepsilon$ or on a $N \in \mathbb{N}$ tell que $\forall n \geqslant N$, $x_n y_n \leqslant \eta$, ainsi $\forall n \geqslant N$, $f(x_n) f(y_n) \leqslant \varepsilon$ et donc $f(x_n) f(y_n) \xrightarrow[n \to +\infty]{} 0$.
 - (⇐) Par contraposée, si f n'est pas uniformément continue, on a $\varepsilon > 0$ tel que $\forall \eta > 0$, $\exists x, y \in I$, $|x y| \le \eta$ et $|f(x) f(y)| > \varepsilon$.
- Soit $n \in \mathbb{N}$ et $\eta = \frac{1}{n+1}$, on a x_n, y_n des réels tels que $\left|a_n y_n\right| \leqslant \frac{1}{n+1}$ et $\left|f(x_n) f(y_n)\right| > \varepsilon$. Ainsi, $x_n y_n \to 0$ et $f(x_n) f(y_n) \neq 0$.

Propriété

Une combinaison linéaire, une composée de fonctions uniformément continue l'est encore.

Faux pour un produit ou un quotient.

Exemples

- **E1** Les fonctions constantes, $x \mapsto x$ sont uniformément continues.
- **E2** $f: x \mapsto ax + b$ est uniformément continue sur \mathbb{R} .
- **E3** $f: x \mapsto |x|$ est uniformément continue sur \mathbb{R} .
- **E4** $f: x \mapsto x^2$ n'est pas uniformément continue sur \mathbb{R} : problème si $x \to \pm \infty$ (pente trop forte). $x_n = n + \frac{1}{n}$, $y_n = n$ alors $x_n y_n = \frac{1}{n} \to 0$ mais $x_n^2 y_n^2 = 2 + \frac{1}{n^2} \neq 0$.
- E5 $f: x \mapsto \sqrt{x}$ est uniformément continue sur \mathbb{R} (malgré la pente infinie en 0) : si $x_n y_n \to 0$, on peut supposer $x_n \geqslant y_n$, alors

$$\left(\sqrt{x_n} - \sqrt{y_n}\right)^2 = x_n - 2\sqrt{x_n y_n} + y_n \leqslant x_n - 2y_n + y_n = x_n - y_n \to 0.$$

Donc
$$|\sqrt{x_n} - \sqrt{y_n}| \leqslant \sqrt{|x_n - y_n|}$$
. Donc $\sqrt{x_n} - \sqrt{y_n} \to 0$.

E6 – $f: x \mapsto \frac{1}{x}$ n'est pas uniformément continue sur \mathbb{R}_+^* problème si $x \to 0$ (pente trop forte).

$$x_n = \frac{2}{n}, \ y_n = \frac{1}{n} \text{ alors } x_n - y_n = \frac{1}{n} \to 0 \text{ mais } \frac{1}{x_n} - \frac{1}{y_n} = -\frac{n}{2} \neq 0.$$

Remarque

La fonction $\sqrt{\cdot}$ vérifie $\forall x, y, \ \sqrt{x} - \sqrt{y} \leqslant k \times |x - y|^{1/2}$, on dit qu'elle est 1/2-hölderienne. Toute fonction α -hölderienne est facilement uniformément continue.

Théorème : de Heine

Tout fonction continue sur un segment y est uniformément continue.

Démonstration

Si $f:[a,b]\to\mathbb{K}$ continue non uniformément continue, on a $\varepsilon>0$ et $(x_n)_n,(y_n)_n\in[a,b]^\mathbb{N}$ telles que $x_n-y_n\xrightarrow[n\to+\infty]{}0$ et pour tout $n,f(x_n)-f(y_n)>\varepsilon$. (voir preuve de la caractérisation séquentielle).

D'après le théorème de Bolzano-Weierstrass, on peut extraire de la suite bornée x une suite convergente $(x_{\varphi(n)})_n$, puis de la suite bornée $(y_{\varphi(n)})_n$ une suite convergente $(y_{\varphi\circ\psi(n)})_n$. Alors $(x_{\varphi\circ\psi(n)})_n$ est aussi convergente comme suite extraite de $(x_{\varphi(n)})_n$ et $x_{\varphi\circ\psi(n)}-y_{\varphi\circ\psi(n)}\to 0$ donc les deux limites sont égales à ℓ .

Alors, par continuité, $f\left(x_{\varphi\circ\psi(n)}\right)\to f(\ell)$ et $f\left(y_{\varphi\circ\psi(n)}\right)\to f(\ell)$ donc

$$f(x_{\varphi \circ \psi(n)}) - f(y_{\varphi \circ \psi(n)}) \to 0$$

ce qui contredit $f(x_{\varphi \circ \psi(n)}) - f(y_{\varphi \circ \psi(n)}) > \varepsilon$.

Théorème

Toute fonction continue par morceau sur un segment est limite uniforme sur ce segment d'une suite de fonctions en escalier.

Démonstration

Cas continu Soit $\varepsilon > 0$. Par théorème de Heine, f est uniformément continue sur [a, b]. On a donc $\eta > 0$ tel que

$$\forall x, y \in [a, b], |x - y| \leq \eta \Longrightarrow |f(x) - f(y)| \leq \varepsilon.$$

On choisit une subdivision $\sigma=(a_0,\ldots,a_n)$ de [a,b] de pas $h=\max_{0\leqslant k\leqslant n-1}\left(a_{k+1}-a_k\right)\leqslant \eta$.

On définit alors $\varphi: x \mapsto \left\{ \begin{array}{ll} f(a_k) & \text{si } x \in [a_k, a_{k+1}[\\ f(b) & \text{si } x = b \end{array} \right.$ une fonction en escalier.

Alors, si $x \in [a,b[$, on a k tell que $x \in [a_k,a_{k+1}[$ et $\left|x-a_k\right| \leqslant \left|a_{k+1}-a_k\right| \leqslant \eta$ donc $\left|f(x)-\varphi(x)\right| = \left|f(x)-f(a_k)\right| \leqslant \varepsilon$, soit x=b et $\left|f(b)-\varphi(b)\right| = 0 \leqslant \varepsilon$.

On a donc bien $\|f - \varphi\|_{\infty} \leqslant \varepsilon$.

Cas continu par morceaux Soit $\sigma = (a_0, ..., a_n)$ de [a, b] adaptée à f.

Chaque $f_{\mid]a_k,a_{k+1} \mid}$ se prolonge par continuité en une fonction f_k continue sur $[a_k,a_{k+1}]$: on a $\varphi_k \in \mathscr{E}([a,b])$ telle que $\left\| f_k - \varphi_j \right\|_{\infty} \leqslant \varepsilon$.

On pose alors $\varphi: x \mapsto \left\{ \begin{array}{ll} \varphi_k(x) & \text{si } x \in \left] a_k, a_{k+1} \right[\\ f(a_k) & \text{si } x = a_k \end{array} \right.$ une fonction en escalier.

Alors, si $x \in [a,b]$, soit on a k tel que $x \in]a_k, a_{k+1}[$ et $\left|\varphi(x) - f(x)\right| = \left|\varphi_k(x) - f_k(x)\right| \leqslant \varepsilon$ soit on a k tel que $x = a_k$ et $\left|\varphi(a_k) - f(a_k)\right| = 0 \leqslant \varepsilon$.

On a donc bien $||f - \varphi||_{\infty} \leq \varepsilon$.

III FONCTIONS LIPSCHITZIENNES

Définition

 $f: X \subset \mathbb{R} \to \mathbb{R}$ est dite k-lipschitzienne sur X (où $k \in \mathbb{R}_+^*$) si

$$\forall x, y \in X, |f(x) - f(y)| \leq k |x - y|.$$

Propriété

Toute fonction lipschitzienne (ou plus généralement hölderienne) sur I y est uniformément continue. La réciproque est fausse.

Remarque

f lipschitzienne $\Longrightarrow f$ uniformément continue $\Longrightarrow f$ continue.

Plus précisément :

f lipschitzienne $\Rightarrow f$ höldérienne $\Rightarrow f$ uniformément continue $\Rightarrow f$ continue.

Démonstration

$$\forall x, y \in I, \ |f(x) - f(y)| \le k |x - y|^{\alpha} \ (\alpha = 1 \text{ si lipschitzienne}).$$

Donc si $x_n - y_n \to 0, \ f(x_n) - f(y_n) \to 0.$

Exemples

 ${f E\,I}-\sqrt{\cdot}$ est uniformément continue mais pas lipschitzienne car si

$$\forall x, y \in \mathbb{R}^+, |\sqrt{x} - \sqrt{y}| \leq k |x - y|$$

avec k > 0, on va avoir un problème près de zéro (pente trop forte). Pour y = 0, on obtient $\forall x \in \mathbb{R}^+$, $\sqrt{x} \leqslant kx$ et si $x \neq 0$, $\sqrt{x} \geqslant \frac{1}{k}$ donc $x \geqslant \frac{1}{k^2}$. Contradiction.

E2 – Par inégalité des accroissements finis, une fonction continue sur I et dérivable sur \mathring{I} (c'est le cas si elle est de classe \mathscr{C}^1) à dérivée bornée sera lipschitzienne donc uniformément continue. C'est le cas par exemple des fonctions \sin et \cos .