Espaces préhilbertiens réels

Tous les espaces vectoriels de ce chapitre, souvent notés E, sont des \mathbb{R} -espaces vectoriels.

PRODUIT SCALAIRE ET NORME EUCLIDIENNE

1 Définition d'un produit scalaire

Définition: Produit scalaire

Soit E un \mathbb{R} -espace vectoriel.

On appelle **produit scalaire sur** *E* toute *forme bilinéaire symétrique définie-positive*.

C'est-à-dire toute application $(\cdot|\cdot)$: $E \times E \longrightarrow \mathbb{R}$ telle que

Linéarité à gauche :

Pour tout $y \in E$, l'application $x \mapsto (x|y)$ est linéaire :

 $\forall (x_1, x_2, y) \in E^3, \ \forall \lambda \in \mathbb{R}, \ (x_1 + \lambda x_2 | y) = (x_1 | y) + \lambda (x_2 | y).$

(i) Bilinéarité : {

Linéarité à droite :

Pour tout $x \in E$, l'application $y \mapsto (x|y)$ est linéaire :

 $\forall \, (x,y_1,y_2) \in E^3, \ \, \forall \, \lambda \in \mathbb{R}, \ \, (x|y_1+\lambda y_2) = (x|y_1) + \lambda (x|y_2).$

(ii) **Symétrie** : $\forall (x, y) \in E^2$, (x|y) = (y|x).

Positivité:

(iii) Définie-positivité : <

 $\forall x \in E, (x|x) \geqslant 0;$

Caractère défini :

 $\forall x \in E, (x|x) = 0 \Rightarrow x = 0.$

Remarques

- R1 Dans la pratique on commence par montrer la symétrie, et alors la linéarité à droite découle de la linéarité à gauche et vice versa : il suffit de ne montrer que l'une ou l'autre.
- **R2** La définie-positivité se résume par $\forall x \neq 0$, (x|x) > 0

Définition : Espace préhilbertien réel, espace euclidien

Si E est un \mathbb{R} -espace vectoriel, et si $(\cdot|\cdot)$ un produit scalaire sur E, on dit que $(E,(\cdot|\cdot))$ est un **espace préhilbertien** réel

Si E est un \mathbb{R} -espace vectoriel *de dimension finie*, et si $(\cdot|\cdot)$ un produit scalaire sur E, on dit que $(E,(\cdot|\cdot))$ est un **espace euclidien**.

Remarques

- R1 Un espace euclidien est donc un espace préhilbertien réel de dimension finie.
- **R2** On note en général (x|y) ou $\langle x|y\rangle$ ou $\langle x,y\rangle$ ou $x\cdot y...$
- R3 Ne pas oublier de commencer par vérifier que le produit scalaire est bien défini (pas au sens défini-positif!) lorsque cela n'est pas évident.

Exemple

 $(P|Q) = \int_0^{+\infty} \mathrm{e}^{-t} P(t) Q(t) \, \mathrm{d}t$ sur $\mathbb{R}[X]$, en confondant polynôme et fonction polynomiale associée.

2 Exemples

Sur \mathbb{R}^n

Définition - Propriété : Produit scalaire canonique sur \mathbb{R}^n

Pour des vecteurs x et y de \mathbb{R}^n , avec $x=(x_1,\ldots,x_n)$ et $y=(y_1,\ldots,y_n)$, on définit

$$(x|y) = \sum_{i=1}^{n} x_i y_i.$$

 $(\cdot|\cdot)$ fait de \mathbb{R}^n un espace euclidien : c'est le **produit scalaire canonique** sur \mathbb{R}^n .

Remarques

R1 – Important : Si X et Y désignent les matrices colonnes des composantes de x et de y dans la base canonique, on remarque que $(x|y) = X^{\mathsf{T}} \times Y$.

R2 – Dans \mathbb{R}^2 , $(x|y) = x_1y_1 + x_2y_2$, dans \mathbb{R}^3 , $(x|y) = x_1y_1 + x_2y_2 + x_3y_3$.

Démonstration

(i) $(\cdot|\cdot)$ est *symétrique* par commutativité du produit sur \mathbb{R} .

(ii) Linéarité à gauche : $\forall x, x', y \in \mathbb{R}^n$, $\forall \lambda \in \mathbb{R}$,

$$(x + \lambda x'|y) = \sum_{i=1}^{n} (x + \lambda x')_{i} y_{i}$$

$$= \sum_{i=1}^{n} (x_{i} + \lambda x'_{i}) y_{i}$$

$$= \sum_{i=1}^{n} x_{i} y_{i} + \lambda \sum_{i=1}^{n} x'_{i} y'_{i}$$

$$= (x|y) + \lambda (x'|y).$$

La linéarité à droite en découle par symétrie.

(iii) Définie-positivité

• $\forall x \in \mathbb{R}^n$, $(x|x) = \sum_{i=1}^n x_i^2 \ge 0$

• $(x|x) = 0 \iff \sum_{i=1}^{n} x_i^2 = 0 \iff \forall i, x_i = 0 \iff x = 0_{\mathbb{R}^n}$

Remarque

On peut toujours fabriquer sur le modèle de \mathbb{R}^n un produit scalaire « canonique » sur E de dimension finie rendant une base canonique (s'il y en a une) orthonormale. Et même, plus généralement, un produit scalaire rendant une base donnée orthonormale. Par exemple, sur $\mathbb{R}[X]$, (P|Q) =

П

Définition - Propriété : Produit scalaire canonique sur $\mathcal{M}_n(\mathbb{R})$

Pour des vecteurs A et B de $\mathcal{M}_n(\mathbb{R})$, on définit

$$(A|B) = \operatorname{tr}(A^{\mathsf{T}} \times B).$$

 $(\cdot|\cdot)$ fait de $\mathcal{M}_n(\mathbb{R})$ un espace euclidien : c'est le **produit scalaire canonique** sur $\mathcal{M}_n(\mathbb{R})$.

Remarque

Il s'agit en fait de l'écriture matricielle du produit scalaire canonique sur \mathbb{R}^{n^2} .

Démonstration

$$\operatorname{tr}(A^{\mathsf{T}} \times B) = \sum_{i=1}^{n} (A^{\mathsf{T}} \times B)_{i,i} = \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i,j} b_{i,j} = \sum_{(i,j) \in [\![1,n]\!]^2} a_{i,j} b_{i,j}.$$

Sur $\mathscr{C}([a,b],\mathbb{R})$

Définition - Propriété

Pour des fonctions f et g de $\mathscr{C}([a,b],\mathbb{R})$ où a < b, on définit

$$(f|g) = \int_{a}^{b} fg$$

 $(\cdot|\cdot)$ fait de $\mathscr{C}([a,b],\mathbb{R})$ un espace préhilbertien réel : c'est le **produit scalaire canonique** sur $\mathscr{C}([a,b],\mathbb{R})$

Remarque

Attention, avec des fonctions continues par morceaux seulement, on a presque un produit scalaire : c'est une forme bilinéaires symétrique positive, il manque seulement $(f|g) = 0 \Longrightarrow f = 0$.

Démonstration

- (i) $(\cdot|\cdot)$ est *symétrique* par commutativité du produit sur \mathbb{R} .
- (ii) Linéarité à gauche : $\forall f, \tilde{f}, g \in \mathscr{C}([a, b], \mathbb{R}), \forall \lambda \in \mathbb{R}$,

$$\begin{split} (f+\lambda\tilde{f}|g) &= \int_a^b (f+\lambda\tilde{f})g \\ &= \int_a^b (fg+\lambda\tilde{f}g) \\ &= \int_a^b fg+\lambda\int_a^b \tilde{f}g \text{ (par linéarité de l'intégrale)} \\ &= (f|g)+\lambda(\tilde{f}|g). \end{split}$$

La linéarité à droite en découle par symétrie.

- (iii) Définie-positivité
 - $\forall f \in \mathscr{C}([a,b],\mathbb{R})$, $(f|f) = \int_a^b f^2(x) \, \mathrm{d}x \geqslant 0$ (par positivité de l'intégrale et comme a < b)

•
$$(f|f) = 0$$
 $\iff \int_a^b f^2(x) \, dx = 0$ $\iff f^2 \equiv 0 \text{ (car } f^2 \text{ est une fonction continue et positive)}$

Exemple: HP mais Classique

Plus généralement, si I est un intervalle et $L^2(I)$ est l'ensemble des fonctions continues sur I telles que f^2 est intégrable, de l'inégalité classique

$$|fg| \leqslant \frac{1}{2} \left(f^2 + g^2 \right)$$

on obtient la bonne définition de

$$(f|g) = \int_I fg$$

et on vérifie facilement que $L^2(I)$ est un \mathbb{R} -espace vectoriel, et que $(\cdot|\cdot)$ est un produit scalaire sur $L^2(I)$.

On définit de la même manière un produit scalaire sur l'espace $\ell^2(\mathbb{R})$ des suites réelles de carré sommable, c'est-à- dire des suites $u,v\in\mathbb{R}^\mathbb{N}$ telle que $\sum u_n^2$ et $\sum v_n^2$ convergente.

Alors $\sum u_n v_n$ est absolument convergente et on pose $(u|v) = \sum_{n=0}^{+\infty} u_n v_n$.

3 Norme euclidienne

Définition

Définition: Norme euclidienne

Soit (E, |) un espace préhilbertien réel.

Pour tout vecteur x de E, on pose $||x|| = \sqrt{(x|x)}$.

L'application $\|\cdot\|$ est appelée **norme euclidienne** sur E associée au produit scalaire $(\cdot|\cdot)$.

Remarque

La positivité du produit scalaire rend cette définition licite.

Exemples

- E1 Sur \mathbb{R}^n muni de son produit scalaire canonique, $\|x\| = \sqrt{\sum_{i=1}^n x_i^2}$. En particulier, sur \mathbb{R} , $\|x\| = |x|$.
- **E2** Sur $\mathcal{M}_n(\mathbb{R})$ muni de son produit scalaire canonique, $\|A\| = \sqrt{\operatorname{tr}(A^{\mathsf{T}} \times A)}$.
- E3 Sur $\mathscr{C}([a,b],\mathbb{R})$ muni de son produit scalaire canonique, $||f|| = \sqrt{\int_a^b f^2(t) dt}$.

Identités remarquables et polarisation

Propriété: Identités remarquables

Soit E un espace préhilbertien réel et $\|.\|$ la norme associée au produit scalaire. Pour tous vecteurs x et y de E,

(i)
$$\|x+y\|^2 = \|x\|^2 + 2(x|y) + \|y\|^2$$

(ii)
$$||x-y||^2 = ||x||^2 - 2(x|y) + ||y||^2$$

(iii)
$$||x + y||^2 + ||x - y||^2 = 2(||x||^2 + ||y||^2)$$
 (Identité du parallélogramme)

Propriété : Identités de polarisation

Soit (E, |) un espace préhilbertien réel et ||.|| la norme associée au produit scalaire. Pour tous vecteurs x et y de E,

(i)
$$(x|y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2)$$

(ii)
$$(x|y) = \frac{1}{2} (\|x+y\|^2 - \|x\|^2 - \|y\|^2)$$

Inégalité de Cauchy-Schwarz

Théorème : Inégalité de Cauchy-Schwarz

Soit (E,|) un espace préhilbertien réel. Alors

$$\forall x, y \in E, (x|y)^2 \le (x|x)(y|y)$$
 ie $\forall x, y \in E, |(x|y)| \le ||x|| ||y||,$

avec égalité si et seulement si x et y sont liés (i.e. y = 0 ou $\exists \lambda \in \mathbb{R}, x = \lambda y$)

Remarque

L'inégalité est encore valable pour une forme bilinéaire symétrique seulement positive, mais le cas d'égalité n'est plus valable. C'est le cas par exemple de la covariance.

Démonstration

Soit λ un nombre réel. On pose $P(\lambda) = (x + \lambda y | x + \lambda y)$: on a que $P(\lambda) \geqslant 0$ par positivité. Or

$$P(\lambda) = (x|x) + \lambda(x|y) + \lambda(y|x) + \lambda^{2}(y|y)$$
$$= (x|x) + 2\lambda(x|y) + \lambda^{2}(y|y)$$

C'est un polynôme de degré au plus 2 à coefficients réels.

Cas 1 : Si (y|y) = 0, alors on doit avoir, pour tout $\lambda \in \mathbb{R}$, $(x|x) + 2\lambda(x|y) \geqslant 0$, ce qui n'est possible que si (x|y) = 0 et l'inégalité est vraie.

Cas 2 : Sinon, le polynôme en λ est de degré 2 de signe constant donc son discriminant réduit est négatif

$$\Delta' = (x|y)^2 - (x|x)(y|y) \leqslant 0$$

et on obtient l'inégalité recherchée.

Cas d'égalité :

Si y = 0, il y a égalité.

Si $y \neq 0$, il y a égalité si et seulement si $P(\lambda)$ admet une racine (double) si et seulement si $\exists \lambda \in \mathbb{R}, \ (x + \lambda y | x + \lambda y) = 0$, ce qui équivaut à $\exists \lambda \in \mathbb{R}, \ x + \lambda y = 0$ et donc x et y sont liés.

Exemple

Sur
$$\mathbb{R}^n$$
, $\left(\sum_{k=1}^n x_i y_i\right)^2 \le \sum_{k=1}^n x_i^2 \sum_{k=1}^n y_i^2$.

Sur
$$\mathscr{C}([a,b],\mathbb{R}), \left(\int_a^b fg\right)^2 \leqslant \int_a^b f^2 \int_a^b g^2.$$

Exercice: CCINP 76

Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|).

On pose $\forall x \in E$, $||x|| = \sqrt{(x|x)}$.

- 1. (a) Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
 - (b) Dans quel cas a-t-on égalité? Le démontrer.
- **2.** Soit $E = \{ f \in \mathcal{C}([a, b], \mathbb{R}), \forall x \in [a, b] \ f(x) > 0 \}$.

Prouver que l'ensemble $\left\{ \int_a^b f(t) \mathrm{d}t \times \int_a^b \frac{1}{f(t)} \mathrm{d}t, f \in E \right\}$ admet une borne inférieure m et déterminer la valeur de m.

(a) Soit E un \mathbb{R} -espace vectoriel muni d'un produit scalaire noté (|).

On pose $\forall x \in E$, $||x|| = \sqrt{(x|x)}$.

Inégalité de Cauchy-Schwarz : $\forall (x, y) \in E^2$, $|(x|y)| \leq ||x|| ||y||$

Soit $(x, y) \in E^2$. Posons $\forall \lambda \in \mathbb{R}, P(\lambda) = ||x + \lambda y||^2$.

On remarque que $\forall \lambda \in \mathbb{R}, P(\lambda) \geqslant 0$.

De plus, $P(\lambda) = (x + \lambda y | x + \lambda y)$.

Donc, par bilinéarité et symétrie de (|), $P(\lambda) = ||y||^2 \lambda^2 + 2\lambda (x|y) + ||x||^2$.

On remarque que $P(\lambda)$ est un trinôme en λ si et seulement si $||y||^2 \neq 0$.

Premier cas: si y = 0

Alors |(x|y)| = 0 et ||x|| ||y|| = 0 donc l'inégalité de Cauchy-Schwarz est vérifiée.

Deuxième cas : $y \neq 0$

Alors $||y|| = \sqrt{(y|y)} \neq 0$ car $y \neq 0$ et (|) est une forme bilinéaire symétrique définie positive.

Donc, P est un trinôme du second degré en λ qui est positif ou nul.

On en déduit que le discriminant réduit Δ est négatif ou nul.

Or $\Delta = (x|y)^2 - ||x||^2 ||y||^2$ donc $(x|y)^2 \le ||x||^2 ||y||^2$.

Et donc, $|(x|y)| \le ||x|| ||y||$.

(b) On reprend les notations de 1...

Prouvons que $\forall (x, y) \in E^2$, $|(x|y)| = ||x|| ||y|| \iff x \text{ et } y \text{ sont colinéaires}$.

Supposons que |(x|y)| = ||x|| ||y||.

Premier cas : si y = 0

Alors x et y sont colinéaires.

Deuxième cas : si $y \neq 0$

Alors le discriminant de P est nul et donc P admet une racine double λ_0 .

C'est-à-dire $P(\lambda_0) = 0$ et comme (|) est définie positive, alors $x + \lambda_0 y = 0$.

Donc x et y sont colinéaires.

Supposons que x et y soient colinéaires.

Alors $\exists \alpha \in \mathbb{R}$ tel que $x = \alpha y$ ou $y = \alpha x$.

Supposons par exemple que $x = \alpha y$ (raisonnement similaire pour l'autre cas).

$$|(x|y)| = |\alpha| \cdot |(y|y)| = |\alpha| \cdot ||y||^2$$
 et $||x|| \cdot ||y|| = \sqrt{(x|x)} \cdot ||y|| = \sqrt{\alpha^2(y|y)} \cdot ||y|| = |\alpha| \cdot ||y||^2$.

Donc, on a bien l'égalité.

2. On considère le produit scalaire classique sur $\mathscr{C}([a,b],\mathbb{R})$ défini par :

$$\forall (f,g) \in \mathscr{C}([a,b],\mathbb{R}), (f|g) = \int_{a}^{b} f(t)g(t)dt.$$

On pose
$$A = \left\{ \int_{a}^{b} f(t) dt \times \int_{a}^{b} \frac{1}{f(t)} dt, f \in E \right\}.$$

 $A \neq \varnothing$ car $(b-a)^2 \in A$ (valeur obtenue pour la fonction $t \longmapsto 1$ de E). De plus, $\forall f \in E, \int_a^b f(t) \mathrm{d}t \times \int_a^b \frac{1}{f(t)} \mathrm{d}t \geqslant 0$ donc A est minorée par 0.

On en déduit que A admet une borne inférieure et on pose $m = \inf A$.

Soit $f \in E$.

On considère la quantité $\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2$.

D'une part,
$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2 = \left(\int_a^b 1 dt\right)^2 = (b-a)^2$$
.

égalité de Cauchy-Schwarz pour le produit scalaire (|) on obtient :

$$\left(\int_a^b \sqrt{f(t)} \frac{1}{\sqrt{f(t)}} dt\right)^2 \leqslant \int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt.$$

On en déduit que $\forall f \in E$, $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt \ge (b-a)^2$.

Donc $m \ge (b-a)^2$.

Et, si on considère la fonction $f: t \longrightarrow 1$ de E, alors $\int_a^b f(t) dt \int_a^b \frac{1}{f(t)} dt = (b-a)^2$.

Donc $m = (b-a)^2$

J. LAROCHETTE

Exercice: CCINP 79

Soit a et b deux réels tels que a < b.

1. Soit h une fonction continue et positive de [a,b] dans \mathbb{R} .

Démontrer que
$$\int_a^b h(x) dx = 0 \Longrightarrow h = 0$$
.

2. Soit E le \mathbb{R} -espace vectoriel des fonctions continues de [a,b] dans \mathbb{R} .

On pose :
$$\forall (f,g) \in E^2$$
, $(f|g) = \int_a^b f(x)g(x)dx$.

Démontrer que l'on définit ainsi un produit scalaire sur ${\it E.}$

- 3. Majorer $\int_{0}^{1} \sqrt{x}e^{-x} dx$ en utilisant l'inégalité de Cauchy-Schwarz.
- 1. Soit h une fonction continue et positive de [a,b] dans \mathbb{R} telle que $\int_{\mathbb{R}}^{b} h(x) dx = 0$.

On pose
$$\forall x \in [a,b], F(x) = \int_{a}^{x} h(t)dt.$$

h est continue sur [a,b] donc F est dérivable sur [a,b].

De plus, $\forall x \in [a, b], F'(x) = h(x)$.

Or h est positive sur [a, b] donc F est croissante sur [a, b]. (*)

Or F(a) = 0 et, par hypothèse, F(b) = 0. C'est-à-dire F(a) = F(b). (**)

D'après (*) et (**), F est constante sur [a, b].

Donc $\forall x \in [a, b], F'(x) = 0.$

C'est-à-dire, $\forall x \in [a, b], h(x) = 0.$

2. On pose \forall $(f,g) \in E^2$, $(f|g) = \int_a^b f(x)g(x)\mathrm{d}x$. Par linéarité de l'intégrale, (|) est linéarire par rapport à sa première variable.

Par commutativité du produit sur \mathbb{R} , (|) est symétrique.

On en déduit que (|) est une forme bilinéaire symétrique. (*)

Soit
$$f \in E$$
. $(f|f) = \int_a^b f^2(x) dx$.

Or $x \mapsto f^2(x)$ est positive sur [a, b] et a < b donc $(f|f) \ge 0$.

Donc (|) est positive. (**)

Soit $f \in E$ telle que (f|f) = 0.

Alors
$$\int_a^b f^2(x) dx = 0$$
.

Or $x \mapsto f^2(x)$ est positive et continue sur [a, b].

Donc, d'après 1., f est nulle sur [a, b].

Donc (|) est définie. (***)

D'après (*), (**) et (***), (|) est un produit scalaire sur E.

 $\text{3. L'inégalité de Cauchy-Schwarz donne} \int_0^1 \sqrt{x} \mathrm{e}^{-x} \, \mathrm{d}x \leqslant \sqrt{\int_0^1 x \, \mathrm{d}x} \sqrt{\int_0^1 \mathrm{e}^{-2x} \, \mathrm{d}x} = \frac{\sqrt{1-\mathrm{e}^{-2}}}{2}.$

Inégalité triangulaire

Propriété : Inégalité de Minkowski

Soit (E, |) un espace préhilbertien réel, de norme euclidienne associée $|| \cdot ||$. Alors

$$\forall x, y \in E, \|x + y\| \le \|x\| + \|y\|$$

avec égalité si et seulement si x et y sont positivement liés (i.e. y = 0 ou $\exists \lambda \in \mathbb{R}_+ / x = \lambda y$) De plus,

$$\forall x, y \in E, \ \left| \|x\| - \|y\| \right| \le \|x + y\| \le \|x\| + \|y\|$$

П

Démonstration

Soient x et y des vecteurs de E.

Il est plus pratique de travailler avec le carré des normes :

$$||x+y||^2 = (x+y|x+y)$$

$$= (x|x) + 2(x|y) + (y|y)$$

$$= ||x||^2 + ||y||^2 + 2(x|y)$$

$$\leq ||x||^2 + ||y||^2 + 2||x|| ||y|| \text{ d'après l'inégalité de Cauchy-Schwarz}$$

$$\leq (||x|| + ||y||)^2$$

Cas d'égalité : Il y a égalité ssi (x|y) = |(x|y)| = ||x|| ||y||

Donc si et seulement si soit y=0, soit il existe $\lambda \in \mathbb{R}$ tel que $x=\lambda y$ (cas d'égalité de Cauchy-Schwarz) et $(x|y)=\big|(x|y)\big|$, ce qui devient, si $x=\lambda y$, $\lambda(x|x)=|\lambda|(x|x)$ donc $\lambda=|\lambda|$ et $\lambda\geqslant 0$.

Pour l'autre inégalité, on écrit que $\|(x+y)-y\| \le \|x+y\| + \|-y\|$ donc $\|x+y\| \ge \|x\| - \|y\|$, puis on échange les rôles de x et y..

Norme sur un \mathbb{R} -espace vectoriel

Propriété

La norme euclidienne associée à un produit scalaire est une norme sur E.

Démonstration

Soient $x \in E$ et $\lambda \in \mathbb{R}$.

- $||x|| = \sqrt{(x|x)} \geqslant 0$
- $||x|| = 0 \iff ||x||^2 = 0 \iff (x|x) = 0 \iff x = 0_E$
- $\|\lambda x\| = \sqrt{(\lambda x | \lambda x)} = \sqrt{\lambda^2(x|x)} = |\lambda| \|x\|$
- Inégalité triangulaire : c'est l'inégalité de Minkowski démontrée ci-dessus.

Définition : Distance euclidienne et écart angulaire

Étant donné des vecteurs x et y d'un espace préhilbertien réel E, on définit :

- la distance euclidienne d(x, y) par d(x, y) = ||x y||,
- si x et y sont non nuls, l'**écart angulaire** θ est le réel défini par

$$\theta \in [0,\pi]$$
 et $\cos \theta = \frac{(x|y)}{\|x\| \|y\|}$.

Remarques

R1 - La bonne définition provient de l'inégalité de Cauchy-Schwarz.

R2 – Autrement dit, $(x|y) = ||x|| ||y|| \cos \theta$.

Définition : Distance à une partie non vide

Si A est une partie non vide de E préhilbertien réel, et $x \in E$, on définit la distance de x à A par $\operatorname{d}(x,A) = \inf_{y \in A} \left(\operatorname{d}(x,y)\right) = \inf_{y \in A} \left\|x-y\right\|$.

Remarque

La borne inférieure existe toujours car $\mathscr{E}_x = \left\{ \|x - y\| \; ; \; y \in A \right\}$ est non vide (car A l'est) et minoré (par 0).

II ORTHOGONALITÉ

1 Vecteurs orthogonaux

Définition: Vecteurs orthogonaux

Soit (E, |) un espace préhilbertien réel, x et y des vecteurs de E. x et y sont dit **orthogonaux** si et seulement si (x|y) = 0. On écrit parfois $x \perp y$.

Remarques

 $\mathbf{R} \mathbf{1} - \mathbf{0}_E$ est orthogonal à tout vecteur.

R2 - La notion d'orthogonalité ne prend de sens qu'en dimension au moins 2.

Démonstration

$$\left\|\,x+y\,\right\|^2 = \|x\|^2 + \left\|\,y\,\right\|^2 + 2(x|y)$$

2 Famille orthonormale

Définition: Familles orthogonale et orthonormale

Soit E un espace préhilbertien réel, $(v_1, \ldots, v_p) \in E^p$.

 (v_1, \dots, v_p) est une **famille orthogonale** de E si et seulement si

$$\forall i, j \in [1, p]$$
, avec $i \neq j$, $(v_i | v_j) = 0$ (ie $v_i \perp v_j$).

 (v_1, \ldots, v_p) est une **famille orthonormale** de E si et seulement si

$$\forall i, j \in [1, p], (v_i | v_j) = \delta_{i, j}$$

Propriété

Toute famille orthogonale de vecteurs non nuls (en particulier toute famille orthonormale) d'un espace préhilbertien réel est libre.

Remarque

C'est un moyen pratique et usuel pour montrer qu'une famille est libre!

Démonstration

Soit $(v_1, ..., v_p)$ une famille orthogonale de vecteurs non nuls d'un espace préhilbertien E. $But: (v_1, ..., v_p)$ est libre.

П

П

Soient $\lambda_1, \dots, \lambda_p \in \mathbb{R}$ tels que $\lambda_1 v_1 + \dots + \lambda_p v_p = 0$.

$$\text{Alors, si } i \in \llbracket 1, p \rrbracket, \ (\lambda_1 v_1 + \dots + \lambda_p v_p | v_i) = \left\{ \begin{array}{l} (0_E | v_i) = 0_{\mathbb{R}} \\ \sum\limits_{j=1}^n \lambda_j (v_j | v_i) = \lambda_i \parallel v_i \parallel^2 \end{array} \right. \text{ or } v_i \neq 0_E, \text{ donc } \lambda_i = 0.$$

Corollaire

Si E est un espace euclidien de dimension n, il n'existe pas de famille orthogonale de plus de n vecteurs non nuls.

Théorème : Théorème de Pythagore

Soit, dans un espace préhilbertien réel E, une famille orthogonale $(v_i)_{i\in [\![1,p]\!]}$. On a

$$\left\| \sum_{i=1}^{p} \nu_i \right\|^2 = \sum_{i=1}^{p} \|\nu_i\|^2$$

La réciproque est vraie pour deux vecteurs mais fausse en général si $p \geqslant 3$.

Démonstration

Par récurrence sur p.

Contre-exemple : la famille $\{\binom{1}{0},\binom{0}{1},\binom{1}{0},\binom{1}{-1}\}$ n'est pas orthogonale (et pour cause, il y 3 vecteurs non nuls en dimension 2!) et vérifie pourtant la propriété de Pythagore.

3 Ensembles orthogonaux

Définition: Parties orthogonales

Soient (E, |) un espace préhilbertien réel et A, B des parties non vides de E. On dit que A est **orthogonale** à B si et seulement si \forall $(a, b) \in A \times B$, (a|b) = 0. On note $A \perp B$.

Propriété

 $Si\ A, B \in \mathscr{P}(E) \setminus \{\varnothing\}$ sont orthogonales, alors $A \cap B = \varnothing$ ou $A \cap B = \{0_E\}$.

Démonstration

Si $A \cap B \neq \emptyset$, soit $x \in A \cap B$. Alors (x|x) = 0, donc x = 0.

Remarque

Si F et G sont des sous-espaces vectoriels de E orthogonaux, alors $F \cap G = \{0_E\}$: leur somme est directe.

Exemple

Parties de \mathbb{R}^3 orthogonales d'intersection vide : $A = \mathbb{R}(0,0,1)$ et $B = (0,1,0) + \mathbb{R}(1,0,0)$.

4 Orthogonal d'un sous-espace

Définition: Orthogonal d'un sous-espace

Soient (E,||) un espace préhilbertien réel, et F un sous-espace vecotiel de E. On définit l'**orthogonal de** F comme l'ensemble des vecteurs orthogonaux à tout vecteur de F:

$$F^{\perp} = \{ x \in E \mid \forall \ y \in F, \ (x|y) = 0 \}$$

$$x \in F^{\perp} \iff x \in E \text{ et } \forall y \in F, (x|y) = 0$$

(Il est parfois noté F°). Il s'agit de la plus grande partie de E (pour l'inclusion) orthogonale à F.

Propriété

Soient (E, |) préhilbertien réel, et F un sous-espace vectorielde E. F^{\perp} est un sous-espace vectoriel de E.

Démonstration

- $0_E \in A^{\perp}$
- $\forall x, x' \in A^{\perp}$, $\forall \lambda \in \mathbb{R}$, $\lambda x + x' \in A^{\perp}$, car $\forall y \in A$, $(\lambda x + x'|y) = \lambda(x|y) + (x'|y) = 0$.

Donc A^{\perp} est un sev de A.

Comme de plus $A \subset \operatorname{Vect} A$, $(\operatorname{Vect} A)^{\perp} \subset A^{\perp}$ et être orthogonal à tout élément de A implique être orthogonal à toute combinaison linéaire d'éléments de A par bilinéairté du produit scalaire, donc $A^{\perp} \subset (\operatorname{Vect} A)^{\perp}$.

Propriété

Soit F un sous-espace de E préhilbertien réel.

 $Si\ F = Vect\ A\ (A\ engendre\ F)\ et\ si\ x\ est\ un\ vecteur\ de\ E,$

$$x \in F^{\perp} \iff \forall \ a \in A, \ (x|a) = 0$$

Démonstration

$$F^{\perp} = A^{\perp}$$
.

Remarque

En particulier, connaissant une base de F, il suffit d'être orthogonal aux vecteurs de la base pour être orthogonal à F.

Propriété

Soit E un espace préhilbertien réel, F et G des sous-espaces vectoriels de E.

- (i) $E^{\perp} = \{0\}$ et $\{0\}^{\perp} = E$.
- (ii) $F \subset (F^{\perp})^{\perp}$,
- (iii) La somme est directe : $F + F^{\perp} = F \oplus F^{\perp} = F \oplus F^{\perp}$,
- (iv) Si $F \subset G$, alors $G^{\perp} \subset F^{\perp}$,
- (v) $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$ et $(F \cap G)^{\perp} \supset F^{\perp} + G^{\perp}$.

П

Démonstration

- $0 \in E^{\perp}$, et si $x \in E^{\perp}$, (x|x) = 0 donc ||x|| = 0 et x = 0.
- Si $x \in F$, pour vecteur y de F^{\perp} , (x|y) = 0, d'où le résultat.
- Comme les ensembles F et F^{\perp} sont orthogonaux, $F \cap F^{\perp} = \emptyset$ ou $F \cap F^{\perp} = \{0\}$, mais $0 \in F \cap F^{\perp}$.
- Soit $x \in G^{\perp}$. Pour tout vecteur $y \text{ de } F, y \in G$, et donc (x|y) = 0. Ainsi $x \in F^{\perp}$.

R1 – Le seul vecteur orthogonal à tous les autres est le vecteur nul. Cela peut être très utile!

R2 – Pour $F \subset (F^{\perp})^{\perp}$ et $(F \cap G)^{\perp} \supset F^{\perp} + G^{\perp}$, on verra que les inclusions sont des égalités si on ajoute une hypothèse de dimension

On peut donner comme contre-exemples, dans $E = \mathcal{C}([0,1],\mathbb{R})$, F le sous-espace vectoriel des fonctions polynomiales. C'est un exercice très classique de montrer que $F^{\perp} = \{0\}$ à l'aide du théorème de Weierstrass, donc $(F^{\perp})^{\perp} = E$ et

$$F \subsetneq \left(F^{\perp}\right)^{\perp} = E.$$

Si, de plus, $G = \{t \mapsto P(t)\sin(t) ; P \in F\}$, alors $G^{\perp} = \{0\}$ et $F \cap G = \{0\}$ d'où

$$E = (F \cap G)^{\perp} \supset F^{\perp} + G^{\perp} = \{0\}.$$

Exercice: CCINP 39

On note ℓ^2 l'ensemble des suites $x = (x_n)_{n \in \mathbb{N}}$ de nombres réels telles que la série $\sum x_n^2$ converge.

1. (a) Démontrer que, pour $x = (x_n)_{n \in \mathbb{N}} \in \ell^2$ et $y = (y_n)_{n \in \mathbb{N}} \in \ell^2$, la série $\sum x_n y_n$ converge.

On pose alors
$$(x|y) = \sum_{n=0}^{+\infty} x_n y_n$$
.

(b) Démontrer que ℓ^2 est un sous-espace vectoriel de l'espace vectoriel des suites de nombres réels.

Dans la suite de l'exercice, on admet que (|) est un produit scalaire dans ℓ^2 .

On suppose que ℓ^2 est muni de ce produit scalaire et de la norme euclidienne associée.

2. Soit $p \in \mathbb{N}$. Pour tout $x = (x_n) \in \ell^2$, on pose $\varphi(x) = x_p$.

Démontrer que φ est une application linéaire et continue de ℓ^2 dans $\mathbb R$.

3. On considère l'ensemble F des suites réelles presque nulles c'est-à-dire l'ensemble des suites réelles dont tous les termes sont nuls sauf peut-être un nombre fini de termes.

Déterminer F^{\perp} (au sens de (|)).

Comparer F et $(F^{\perp})^{\perp}$.

1. (a) Soit $(x, y) \in (l^2)^2$ avec $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$.

$$\forall n \in \mathbb{N}, |x_n y_n| \leqslant \frac{1}{2} (x_n^2 + y_n^2).$$

Or $\sum x_n^2$ et $\sum y_n^2$ convergent donc, par critère de majoration des séries à termes positifs, $\sum x_n y_n$ converge absolument,

(b) La suite nulle appartient à l^2 .

Soit
$$(x, y) \in (l^2)^2$$
 avec $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$. Soit $\lambda \in \mathbb{R}$.

Montrons que $z = x + \lambda y \in l^2$.

On a
$$z = (z_n)_{n \in \mathbb{N}}$$
 avec $\forall n \in \mathbb{N}, z_n = x_n + \lambda y_n$.

$$\forall n \in \mathbb{N}, z_n^2 = (x_n + \lambda y_n)^2 = x_n^2 + \lambda^2 y_n^2 + 2\lambda x_n y_n.$$
 (1)

 $\forall \ n \in \mathbb{N}, \ z_n^2 = (x_n + \lambda y_n)^2 = x_n^2 + \lambda^2 y_n^2 + 2\lambda x_n y_n. \tag{1}$ Par hypothèse, $\sum x_n^2$ et $\sum y_n^2$ convergent et d'après 1.(a), $\sum x_n y_n$ converge. Donc, d'après (1), $\sum z_n^2$ converge.

Donc $z \in l^2$.

On en déduit que l^2 est un sous-espace vectoriel de l'ensemble des suites réelles.

2. Soit $(x, y) \in l^2$ où $x = (x_n)_{n \in \mathbb{N}}$ et $y = (y_n)_{n \in \mathbb{N}}$. Soit $\lambda \in \mathbb{R}$. On pose $z = x + \lambda y$ avec $z = (z_n)_{n \in \mathbb{N}}$.

On a \forall $n \in \mathbb{N}$, $z_n = x_n + \lambda y_n$. Ainsi, $\varphi(x + \lambda y) = \varphi(z) = z_p = x_p + \lambda y_p = \varphi(x) + \lambda \varphi(y)$. Donc φ est linéaire sur l^2 . (*) \forall $x = (x_n) \in l^2$, $|x_p|^2 \leqslant \sum_{n=0}^{+\infty} x_n^2$, donc $|x_p| \leqslant ||x||$.

Donc $\forall x = (x_n)_{n \in \mathbb{N}} \in l^2$, $|\varphi(x)| = |x_p| \le ||x||$ (**) D'après (*) et (**), φ est continue sur l^2 .

3. Analyse:

Soit $x = (x_n)_{n \in \mathbb{N}} \in F^{\perp}$. Alors $\forall y \in F, (x|y) = 0$.

Soit $p \in \mathbb{N}$.

On considère la suite $y = (y_n)_{n \in \mathbb{N}}$ de F définie par :

$$\forall n \in \mathbb{N}, \ y_n = \begin{cases} 1 & \text{si } n = p \\ 0 & \text{sinon} \end{cases}$$

 $y \in F$, donc (x|y) = 0, donc $x_p = 0$.

On en déduit que, $\forall p \in \mathbb{N}, x_p = 0$.

C'est-à-dire x = 0.

Synthèse:

la suite nulle appartient bien à F^{\perp} .

Conclusion : $F^{\perp} = \{0\}$.

Ainsi, $(F^{\perp})^{\perp} = l^2$.

On constate alors que $F \neq (F^{\perp})^{\perp}$.

III ESPACES OU SOUS-ESPACES EUCLIDIENS

Remarque : Rappel

Un espace euclidien est un \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire.

1 Base orthonormale

Théorème

Tout espace euclidien non réduit à 0_E admet une base orthonormale (abrégé en b.o.n.).

On a même un algorithme permettant de transformer une base en base orthonormale. Découvrons-le sur un exemple avant de le formaliser :

Exemple

Dans \mathbb{R}^3 muni de sa structure euclidienne canonique, on considère $e_1 = (0,1,1)$, $e_2 = (1,0,1)$, $e_3 = (1,1,0)$. Il est facile de voir que (e_1,e_2,e_3) est une base de \mathbb{R}^3 (en calculant le déterminant dans la base canonique, par exemple).

On va d'abord transformer la famille en une famille orthogonale, puis orthonormale qui sera donc bien une base.

On pose $\varepsilon_1 = e_1 = (0, 1, 1)$.

Puis on cherche $\varepsilon_2 = e_2 + \lambda \varepsilon_1$ avec λ tel que $(\varepsilon_1 | \varepsilon_2) = 0$ ie $(\varepsilon_1 | e_2) + \lambda (\varepsilon_1 | \varepsilon_1) = 1 + 2\lambda = 0$ donc $\lambda = -\frac{1}{2}$ et $\varepsilon_2 = \left(1, -\frac{1}{2}, \frac{1}{2}\right)$.

En cherchant $\varepsilon_3 = e_3 + \mu \varepsilon_1 + \nu \varepsilon_2$ tel que $(\varepsilon_1 | \varepsilon_3) = 0$ et $(\varepsilon_2 | \varepsilon_3) = 0$, on trouve $\mu = -\frac{1}{2}$ et $\nu = -\frac{1}{3}$. Soit $\varepsilon_3 = \left(\frac{2}{3}, \frac{2}{3}, -\frac{2}{3}\right)$.

On a obtenu trois vecteurs non nuls orthogonaux deux à deux en dimension 3 : il s'agit d'une base orthogonale de \mathbb{R}^3 . Reste à normaliser pour obtenir une b.o.n. $\epsilon_1' = \left(0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \ \epsilon_2' = \left(\frac{2}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}\right)$ et $\epsilon_3' = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, -\frac{1}{\sqrt{3}}\right)$.

Définition: Orthonormalisation de Schmidt

Étant donné (E, \mid) un espace euclidien, et (e_1, \dots, e_n) une base de E:

- 1. On pose $\varepsilon_1 = e_1$.
- 2. Par récurrence, pour $j \ge 2$, on cherche des réels λ_k tels que le vecteur $\varepsilon_j = e_j + \sum_{k=1}^{j-1} \lambda_k \varepsilon_k$ soit orthogonal à tous les ε_i pour $i \in [1, j-1]$:

$$\forall i < j, (\varepsilon_i | \varepsilon_i) = 0.$$

3. On normalise les vecteurs : $\left(\frac{\varepsilon_1}{\|\varepsilon_1\|}, \dots, \frac{\varepsilon_n}{\|\varepsilon_n\|}\right)$

Remarque

Il est aussi possible de normaliser les vecteurs au fur et à mesure.

Propriété

On obtient ainsi que $(\varepsilon_1,...,\varepsilon_n)$ est une famille orthogonale de vecteurs non nuls tels que pour tout j, $\operatorname{Vect}(e_1, \dots, e_j) = \operatorname{Vect}(\varepsilon_1, \dots, \varepsilon_j)$ et la composante sur e_j de ε_j vaut 1.

On a alors
$$\left(\frac{\varepsilon_1}{\|\varepsilon_1\|}, \dots, \frac{\varepsilon_n}{\|\varepsilon_n\|}\right)$$
 est une b.o.n de E .

Démonstration

- 1^{ère} étape : Orthogonalisation.
 - *** On pose** $\varepsilon_1 = e_1$. (Et alors $\varepsilon_1 \neq 0_E$.)
 - ★ On cherche $\varepsilon_2 \in \text{Vect}(\varepsilon_1, e_2)$ tel que $(\varepsilon_1 | \varepsilon_2) = 0$.

On cherche donc un réel
$$\lambda$$
 tel que $\varepsilon_2 = e_2 + \lambda \varepsilon_1$ et $(\varepsilon_1|\varepsilon_2) = 0$. Donc $\lambda \|\varepsilon_1\|^2 + (\varepsilon_1|e_2) = 0$, puis $\lambda = -\frac{(\varepsilon_1|e_2)}{\|\varepsilon_1\|^2}$.

Finalement,
$$\varepsilon_2 = e_2 - \frac{(\varepsilon_1|e_2)}{\|\varepsilon_1\|^2} \varepsilon_1$$
.

De plus, $\varepsilon_2 \neq 0$ car (e_1, e_2) est une famille libre, et $\text{Vect}(\varepsilon_1, \varepsilon_2) = \text{Vect}(e_1, e_2)$. (L'inclusion \subset est immédiate, l'inclusion \supset vient du fait qu'on puisse exprimer facilement e_2 comme combinaison linéaire de ε_1 et ε_2 : $e_2 = \varepsilon_2 + \frac{(\varepsilon_1|e_2)}{\|\varepsilon_1\|^2}\varepsilon_1$.)

- \star Supposons, par récurrence, que l'on ait construit $\varepsilon_1,\ldots,\varepsilon_{j-1}$ tels que
 - $\circ (\varepsilon_1, ..., \varepsilon_{j-1})$ est une famille orthogonale de vecteurs non nuls,
 - $\circ \ \ \mathsf{pour} \ \mathsf{tout} \ \mathsf{entier} \ i \in [\![2,j-1]\!], \ \mathsf{Vect}(\varepsilon_1,\ldots,\varepsilon_i) = \mathsf{Vect}(\mathsf{e}_1,\ldots,\mathsf{e}_i)$
 - o pour tout entier $i \in [2, j-1]$, la composante de ε_i sur e_i est 1.

On cherche des réels λ_k tels que le vecteur $\varepsilon_j = e_j + \sum_{k=1}^{j-1} \lambda_k \varepsilon_k$ soit orthogonal à tous les ε_i pour $i \in [\![1,j-1]\!]$: $(\varepsilon_i | \varepsilon_j) = 0$.

Donc, si
$$i \in [1, j-1]$$
, $(\varepsilon_i | e_j) + \sum_{k=1}^{j-1} \lambda_k(\varepsilon_i | \varepsilon_k) = 0$.

$$\label{eq:local_problem} \text{D'où } (\varepsilon_i|e_j) + \lambda_i \left\| \varepsilon_i \right\|^2 = 0 \text{, puis } \lambda_i = -\frac{(\varepsilon_i|e_j)}{\left\| \varepsilon_i \right\|^2}.$$

La récurrence est alors établie avec $\left| \varepsilon_j = e_j - \sum_{k=1}^{j-1} \frac{(\varepsilon_k | e_j)}{\|\varepsilon_k\|^2} \varepsilon_k \right|$.

En effet:

- $\circ \ (\varepsilon_1,\ldots,\varepsilon_j)$ est une famille orthogonale de vecteurs non nuls,
- $\circ \operatorname{Vect}(\varepsilon_1, \dots, \varepsilon_j) = \operatorname{Vect}(e_1, \dots, e_j).$ En effet, $Vect(\varepsilon_1, \dots, \varepsilon_{j-1}) = Vect(e_1, \dots, e_{j-1})$, donc l'inclusion \subset est immédiate et l'inclusion \supset vient du fait que l'on puisse exprimer facilement e_j comme combinaison linéaire des ε_i , pour $i \in [1, j]$: $e_j = \varepsilon_j + \sum_{k=1}^{j-1} \frac{(\varepsilon_k | e_j)}{\|\varepsilon_k\|^2} \varepsilon_k$.
- \circ La composante de ε_i sur e_i est 1.

On obtient n vecteurs non nuls orthogonaux en dimension n: $(\varepsilon_1, \ldots, \varepsilon_n)$ est une base orthogonale de E.

2ème étape : Normalisation.

On obtient alors très facilement un b.o.n. de E:

$$\left(\frac{\varepsilon_1}{\|\varepsilon_1\|}, \dots, \frac{\varepsilon_n}{\|\varepsilon_n\|}\right).$$

Remarque

Matrice de passage de la base $(e_1,...,e_n)$ à la base $(\varepsilon_1,...,\varepsilon_n)$:

$$\begin{pmatrix} 1 & * & & * \\ & 1 & & & \\ & & (0) & & 1 & * \\ & & & & 1 \end{pmatrix}$$

à la base de la décomposition QR.

Corollaire

Tout sous-espace vectoriel non nul d'un espace euclidien admet une base orthonormale.

Démonstration

C'est en effet encore un espace euclidien, muni du produit scalaire restreint à ce sous-espace.

Corollaire : Théorème de la base orthonormale incomplète

Tout famille orthonormale d'un espace euclidien peut être complétée en une b.o.n. de cet espace.

Démonstration

Il suffit d'appliquer l'orthonormalisation de Schmidt à cette famille libre complétée en une base : les vecteurs de la famille orthonormale seront inchangés.

2 Coordonnées, produit scalaire et norme en base orthonormale

Propriété

Soit (E, |) un espace euclidien et $\mathscr{B} = (e_1, \ldots, e_n)$ une base orthonormale de $E: x = \sum_{i=1}^n x_i e_i, \ y = \sum_{i=1}^n y_i e_i, \ X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ et $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$. Alors

$$\forall \, i \in [\![1,n]\!], \quad x_i = (e_i|x) \\ \|x\| = \sqrt{\sum_{i=1}^n x_i^2} = X^\mathsf{T} \times X \\ \mathrm{d}(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$$

Démonstration

• Si $i \in [1, n]$,

$$(e_i|x) = \left(e_i \Big| \sum_{j=1}^n x_j e_j\right)$$

$$= \sum_{j=1}^n x_j (e_i|e_j)$$

$$= \sum_{j=1}^n x_j \delta_{i,j}$$

$$= x:$$

$$\bullet (x|y) = \left(\sum_{i=1}^{n} x_i e_i \middle| \sum_{j=1}^{n} y_j e_j\right)$$

$$= \sum_{i=1}^{n} x_i \left(e_i \middle| \sum_{j=1}^{n} y_j e_j\right)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{n} x_i y_j (e_i|e_j)$$

$$= \sum_{i,j=1}^{n} x_i y_j \delta_{i,j}$$

$$= \sum_{i,j=1}^{n} x_i y_i$$

• $||x||^2 = (x|x) = \sum_{i=1}^n x_i^2$, d'après ce qui précède.

Propriétés

Soit E euclidien, \mathscr{B} et \mathscr{B}' des bases orthonormales.

- (i) Si $P = P_{\mathcal{B}}^{\mathcal{B}'}$, $P^{-1} = P^{\mathsf{T}}$.
- (ii) Si $u \in \mathcal{L}(E)$, la formule de changement de base s'écrit

$$Mat_{\mathcal{B}'}(u) = P^{\mathsf{T}} Mat_{\mathcal{B}}(u) P$$

(iii) $\det_{\mathscr{B}} \mathscr{B}' = \pm 1$: 1 si elles ont même orientation, -1 sinon.

Remarques

R1 - La réciproque est fausse, il ne suffit pas que ce déterminant vale ±1 pour que les bases soient orthonormales.

R2 - Faciles, les changements de bases orthonormales!!!

Démonstration

(i) $P_{i,j} = \left(e_i \middle| e_j'\right)$ (coordonnée de e_j' selon e_i .)

$$(P^{-1})_{i,j} = \left(e_i' \middle| e_j\right) = \left(e_j \middle| e_i'\right) = P_{j,i} = \left(P^{\mathsf{T}}\right)_{i,j}.$$

- (ii) Immédiat.
- (iii) $\det_{\mathscr{B}} \mathscr{B}' = \det P \text{ or } PP^{\mathsf{T}} = I_n \text{ donc } (\det P)^2 = 1.$

3 Isomorphisme avec le dual

Théorème : de représentation de Riesz

Soit $a \in E$ euclidien et $\Phi_a : x \in E \mapsto (a|x)$. Alors

$$\Psi: \begin{vmatrix} E & \longrightarrow & \mathcal{L}(E, \mathbb{R}) \\ a & \longmapsto & \Phi_a \end{vmatrix}$$

est un isomorphisme.

Ainsi, pour tout forme linéaire $\varphi \in \mathcal{L}(E,\mathbb{R})$, il existe un unique élément $a \in E$ tel que $\varphi = (a|\cdot)$.

4 Produit mixte

Propriétés

Soit E euclidien orienté et \mathscr{B} est une base orthonormale **directe**. $\det_{\mathscr{B}}$ ne dépend pas de \mathscr{B} .

Démonstration

 $\det_{\mathscr{B}} = \det_{\mathscr{B}} \mathscr{B}' \det_{\mathscr{B}'} = \det_{\mathscr{B}'}.$

Définition: Produit mixte

On appelle **produit mixte** sur E euclidien orienté de dimension n le déterminant de n vecteurs dans n'importe quelle base orthonormale directe.

On le note $[v_1,...,v_n]$, pour $v_1,...,v_n \in E$.

Propriétés

Soit E euclidien orienté.

- (i) $(v_1, ..., v_n) \mapsto [v_1, ..., v_n]$ est une forme n-linéaire alternée sur E.
- (ii) $Si(e_1,\ldots,e_n)$ est une bond, $[e_1,\ldots,e_n]=1$ et $Si(e_1,\ldots,e_n)$ est une boni, $[e_1,\ldots,e_n]=-1$ (réciproque fausse).
- (iii) $[v_1, ..., v_n] = 0$ si et seulement si $(v_1, ..., v_n)$ est liée.
- (iv) Si $u \in \mathcal{L}(E)$, $[u(v_1), ..., u(v_n)] = \det u \times [v_1, ..., v_n]$.

Remarque

Comme, si E est de dimension 3 et $x, y \in E$, $[x, y, \cdot] \in \mathcal{L}(E, \mathbb{R})$, avec l'isomorphisme de la partie précédente, il existe une unique vecteur $a \in E$ tel que pour tout $z \in E$, [x, y, z] = (a|z). Ce vecteur a est appelé produit vectoriel de x et y, noté $x \land y$.

On a alors $[x, y, z] = (x \land y | z)$ d'où l'appellation produit mixte.

Propriété

Soit E euclidien orienté.

- (i) Si dim E=2, $[\vec{u}, \vec{v}]$ représente le volume orienté du parallélogramme construit sur \vec{u} et \vec{v} .
- (ii) Si dim E=3, $[\vec{u}, \vec{v}, \vec{w}]$ représente le volume orienté du parallélépipède construit sur \vec{u} , \vec{v} et \vec{w} .

Démonstration

C'est évident si \vec{u}, \vec{v} (respectivement $\vec{u}, \vec{v}, \vec{w}$) sont liés. Sinon :

- (i) Si $\dim E = 2$, soit (e_1, e_2) base orthonormale obtenu par orthonormalisation de Schmidt de (\vec{u}, \vec{v}) . Alors $\vec{u} = ce_1$ et $\vec{v} = de_1 + he_2$, où h hauteur et c côté, donc $[\vec{u}, \vec{v}] = ch[e_1, e_2] = \pm ch$ aire orientée du parallélogramme.
- (ii) Si $\dim E = 3$, soit (e_1, e_2, e_3) base orthonormale obtenu par orthonormalisation de Schmidt de $(\vec{u}, \vec{v}, \vec{w})$. Alors $\vec{u} = ce_1$, $\vec{v} = de_1 + he_2$ et $\vec{w} = xe_1 + ye_2 + He_3$, où H hauteur et ch aire de la base. $[\vec{u}, \vec{v}, \vec{w}] = chH[e_1, e_2, e_3] = \pm chH$ volume orienté du parallélépipède construit sur \vec{u}, \vec{v} et \vec{w} .

Propriétés de F^{\perp} 5

Théorème

Si F est un sev de dimension finie de E préhilbertien réel, alors

$$E=F\oplus F^\perp=F \odot F^\perp$$

Le sev F^{\perp} est alors appelé supplémentaire orthogonal de F, il est unique.

Démonstration

- Si $F = \{0_E\}$, on a vu que $F^{\perp} = E$ et alors le résultat est immédiat.
- De même, si F=E, on a vu que $F^{\perp}=\{0_E\}$ et alors le résultat est immédiat.
- Sinon, on a déjà que $F \cap F^{\perp} = \{0_E\}$.

De plus, si $(e_1, ..., e_p)$ est une base orthonormée de F, et $y = \sum_{i=1}^p (e_i | x) e_i \in F$, x = y + (x - y) avec $x - y \in F^{\perp}$ car pour tout i, $(x - y|e_i) = 0.$

D'où le résultat.

Unicité: Si $E = F \oplus G$, alors F et G sont orthogonaux, donc, si E est de dimension finie, $G \subset F^{\perp}$ et $\dim G = \dim E - \dim F = \dim F^{\perp}$, donc $G = F^{\perp}$.

Si E n'est pas de dimension finie? si $x \in F^{\perp}$, $x = x_F + x_G$ et $x_F = x - x_G \in F \cap F^{\perp} = \{0_E\}$ donc $x = x_G \in G$ et $G = F^{\perp}$.

Corollaire

Soit E un espace **euclidien**, F et G des sous-espaces vectoriels de E.

(i)
$$\dim F^{\perp} = \dim E - \dim F$$

(iii)
$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$$

(ii)
$$(F^{\perp})^{\perp} = F$$

(iv)
$$(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$$

Remarque

On retiendra qu'en dimension finie, il n'y a plus trop de problème.

Démonstration

(i): Vu dans la précédente démonstration.

(ii): Une inclusion connue et dimensions.

(iii) et (iv) : $F^{\perp} \oplus F = E$: unicité du supplémentaire orthogonal de F^{\perp} .

 $F^{\perp} \cap G^{\perp} \subset (F+G)^{\perp} \text{ est direct.}$ Donc $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$. (Vrai même s'ils ne sont pas de dimension finie.) Puis $(F \cap G)^{\perp} = \left(F^{\perp} \cap G^{\perp}\right)^{\perp} = \left((F^{\perp} + G^{\perp})^{\perp}\right)^{\perp} = F^{\perp} + G^{\perp}$.

Exercice: CCINP 77

Soit E un espace euclidien.

1. Soit A un sous-espace vectoriel de E.

Démontrer que $(A^{\perp})^{\perp} = A$.

- 2. Soient F et G deux sous-espaces vectoriels de E.
 - (a) Démontrer que $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.
 - (b) Démontrer que $(F \cap G)^{\perp} = F^{\perp} + G^{\perp}$.
- 1. On a $A \subset (A^{\perp})^{\perp}$. (*) En effet, $\forall x \in A, \forall y \in A^{\perp}, (x \mid y) = 0.$ C'est-à-dire, $\forall x \in A, x \in (A^{\perp})^{\perp}$.

Comme *E* est un espace euclidien, $E = A \oplus A^{\perp}$ donc dim $A = n - \dim A^{\perp}$.

De même, $E = A^{\perp} \oplus (A^{\perp})^{\perp}$ donc $\dim (A^{\perp})^{\perp} = n - \dim A^{\perp}$.

Donc dim $(A^{\perp})^{\perp}$ = dim A. (**)

D'après (*) et (**), $(A^{\perp})^{\perp} = A$.

2. (a) Procédons par double inclusion. Prouvons que $F^{\perp} \cap G^{\perp} \subset (F+G)^{\perp}$.

Soit $x \in F^{\perp} \cap G^{\perp}$.

Soit $y \in F + G$.

Alors $\exists (f,g) \in F \times G$ tel que y = f + g.

Alors
$$\exists (f,g) \in F \times G \text{ tel que } y = f+g$$

 $(x \mid y) = \underbrace{(x \mid f)}_{\text{car } f \in F \text{ et } x \in F^{\perp}} + \underbrace{(x \mid g)}_{\text{car } g \in G \text{ et } x \in G^{\perp}} = 0.$

Donc $\forall y \in (F+G), (x \mid y) = 0.$

Donc $x \in (F+G)^{\perp}$.

Prouvons que $(F+G)^{\perp} \subset F^{\perp} \cap G^{\perp}$.

Soit $x \in (F+G)^{\perp}$.

 $\forall y \in F$, on a $(x \mid y) = 0$ car $y \in F \subset F + G$.

Donc $x \in F^{\perp}$.

De même, $\forall z \in G$, on a $(x \mid z) = 0$ car $z \in G \subset F + G$.

Donc $x \in G^{\perp}$.

On en déduit que $x \in F^{\perp} \cap G^{\perp}$.

Finalement, par double inclusion, $(F+G)^{\perp} = F^{\perp} \cap G^{\perp}$.

(b) D'après 2.(a), appliquée à F^{\perp} et à G^{\perp} , on a $(F^{\perp} + G^{\perp})^{\perp} = (F^{\perp})^{\perp} \cap (G^{\perp})^{\perp}$.

Donc, d'après 1., $(F^{\perp} + G^{\perp})^{\perp} = F \cap G$.

Donc $((F^{\perp} + G^{\perp})^{\perp})^{\perp} = (F \cap G)^{\perp}$.

C'est-à-dire, en utilisant 1. à nouveau, $F^{\perp} + G^{\perp} = (F \cap G)^{\perp}$.

Exemple: Classique

 $\mathscr{S}_n(\mathbb{R})$ et $\mathscr{A}_n(\mathbb{R})$ sont supplémentaires orthogonaux dans $\mathscr{M}_n(\mathbb{R})$ pour le produit scalaire canonique.

Exercice: CCINP 92

Soit $n \in \mathbb{N}^*$. On considère $E = \mathcal{M}_n(\mathbb{R})$ l'espace vectoriel des matrices carrées d'ordre n. On pose : $\forall (A,B) \in E^2$, $\langle A,B \rangle = \operatorname{tr}({}^tAB)$ où tr désigne la trace et tA désigne la transposée de la matrice A.

- 1. Prouver que \langle , \rangle est un produit scalaire sur E.
- 2. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de E.

Une matrice A de E est dite antisymétrique lorsque ${}^tA = -A$.

On note $A_n(\mathbb{R})$ l'ensemble des matrices antisymétriques de E.

On admet que $S_n(\mathbb{R})$ et $A_n(\mathbb{R})$ sont des sous-espaces vectoriels de E.

- (a) Prouver que $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.
- (b) Prouver que $A_n(\mathbb{R})^{\perp} = S_n(\mathbb{R})$.
- 3. Soit F l'ensemble des matrices diagonales de E.

Déterminer F^{\perp} .

1. <,> est linéaire par rapport à sa première variable par linéarité de la trace, de la transposition et par distributivité de la multiplication par rapport à l'addition dans E.

De plus, une matrice et sa transposée ayant la même trace, on a :

$$\forall (A,B) \in E^2, \langle A,B \rangle = \operatorname{tr}({}^tAB) = \operatorname{tr}({}^t({}^tAB)) = \operatorname{tr}({}^tBA) = \langle B,A \rangle.$$

Donc (,) est symétrique.

On en déduit que (,) est bilinéaire et symétrique. (1)

Soit
$$A = (A_{i,j})_{1 \le i,j \le n} \in E$$
.

$$\langle A, A \rangle = \operatorname{tr}({}^t A A) = \sum_{i=1}^n ({}^t A A)_{i,i} = \sum_{i=1}^n \sum_{k=1}^n ({}^t A)_{i,k} A_{k,i} = \sum_{i=1}^n \sum_{k=1}^n A_{k,i}^2 \ \operatorname{donc} \ \langle A, A \rangle \geqslant 0.$$

Donc (,) est positive. (2)

Soit $A = (A_{i,j})_{1 \le i \le n} \in E$ telle que $\langle A, A \rangle = 0$.

Alors $\sum_{i=1}^{n} \sum_{k=1}^{n} A_{k,i}^{2} = 0$. Or, $\forall i \in [[1, n]], \ \forall k \in [[1, n]], \ A_{k,i}^{2} \geqslant 0$.

Donc $\forall i \in [1, n], \forall k \in [1, n], A_{k,i} = 0$. Donc A = 0.

Donc (,) est définie. (3)

D'après (1),(2) et (3), \langle , \rangle est un produit scalaire sur E.

Remarque importante : Soit $(A, B) \in E^2$.

On pose $A = \left(A_{i,j}\right)_{1\leqslant i,j\leqslant n}$ et $B = \left(B_{i,j}\right)_{1\leqslant i,j\leqslant n}$. Alors $\langle A\,,B\rangle = \operatorname{tr}({}^tAB) = \sum_{i=1}^n ({}^tAB)_{i,i} = \sum_{i=1}^n \sum_{k=1}^n ({}^tA)_{i,k} \, B_{k,i} = \sum_{i=1}^n \sum_{k=1}^n A_{k,i} \, B_{k,i}$.

Donc (,) est le produit scalaire canonique sur E

(a) Soit $M \in S_n(\mathbb{R}) \cap A_n(\mathbb{R})$.

alors ${}^tM = M$ et ${}^tM = -M$ donc M = -M et M = 0.

Donc $S_n(\mathbb{R}) \cap A_n(\mathbb{R}) = \{0\}.$ (1)

Posons $S = \frac{M + {}^tM}{2}$ et $A = \frac{M - {}^tM}{2}$.

On a M = S + A. ${}^{t}S = {}^{t}\left(\frac{M + {}^{t}M}{2}\right) = \frac{1}{2}\left({}^{t}M + {}^{t}({}^{t}M)\right) = \frac{1}{2}\left({}^{t}M + M\right) = S, \text{ donc } S \in S_{n}(\mathbb{R}).$

 ${}^{t}A = {}^{t}\left(\frac{M-{}^{t}M}{2}\right) = \frac{1}{2}\left({}^{t}M-{}^{t}({}^{t}M)\right) = \frac{1}{2}\left({}^{t}M-M\right) = -A, \text{ donc } A \in A_{n}(\mathbb{R}).$

On en déduit que $E = S_n(\mathbb{R}) + A_n(\mathbb{R})$. (2)

D'après (1) et (2), $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.

Remarque: on pouvait également procéder par analyse et synthèse pour prouver que $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.

(b) Prouvons que $S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp}$.

Soit $S \in S_n(\mathbb{R})$.

Prouvons que $\forall A \in A_n(\mathbb{R}), \langle S, A \rangle = 0.$

Soit $A \in A_n(\mathbb{R})$.

 $\langle S, A \rangle = \operatorname{tr}({}^tSA) = \operatorname{tr}(SA) = \operatorname{tr}(AS) = \operatorname{tr}({}^tAS) = -\operatorname{tr}({}^tAS) = -\langle A, S \rangle = -\langle S, A \rangle.$

Donc $2\langle S, A \rangle = 0$ soit $\langle S, A \rangle = 0$.

On en déduit que $S_n(\mathbb{R}) \subset A_n(\mathbb{R})^{\perp}$ (1)

De plus, $\dim A_n(\mathbb{R})^{\perp} = n^2 - \dim A_n(\mathbb{R})$.

Or, d'après 2.(a), $E = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$ donc dim $S_n(\mathbb{R}) = n^2 - \dim A_n(\mathbb{R})$.

On en déduit que dim $S_n(\mathbb{R}) = \dim A_n(\mathbb{R})^{\perp}$. (2)

D'après (1) et (2), $S_n(\mathbb{R}) = A_n(\mathbb{R})^{\perp}$.

3. On introduit la base canonique de $\mathcal{M}_n(\mathbb{R})$ en posant :

 $\forall i \in [\![1,n]\!], \ \forall j \in [\![1,n]\!], \ E_{i,j} = \left(e_{k,l}\right)_{1\leqslant k,l\leqslant n} \text{ avec } e_{k,l} = \left\{ \begin{array}{ll} 1 & \text{si } k=i \text{ et } l=j \\ 0 & \text{sinon} \end{array} \right.$

On a alors $F = \text{Vect}(E_{1,1}, E_{2,2}, ..., E_{n,n})$.

Soit $M=\left(m_{i,j}\right)_{1\leqslant i,j\leqslant n}\in E.$ Alors, en utilisant la remarque importante de la question 1.,

 $M \in F^{\perp} \iff \forall i \in [1, n], \langle M, E_{i,i} \rangle = 0 \iff \forall i \in [1, n], m_{i,i} = 0.$

Donc F^{\perp} = Vect $(E_{i,j} \text{ telles que } (i,j) \in [1,n]^2 \text{ et } i \neq j)$.

En d'autres termes, F^{\perp} est l'ensemble des matrices comprenant des zéros sur la diagonale.

6 Projections et symétries orthogonales

a

Projections orthogonales

Définition: Projection orthogonale

Soit E un espace préhilbertien réel, et F un sous-espace de E de dimension finie. On appelle **projecteur orthogonal sur** F la projection p_F sur F parallèlement à F^{\perp} .

Remarque

Cette définition est justifiée par le fait que $E = F \oplus F^{\perp}$.

Remarque: Illustration

Propriétés

- $p_F \in \mathcal{L}(E)$ et $p_F = p_F^2$
- $F = \operatorname{Im} p_F = \operatorname{Ker} (p_F i d_E)$
- $F^{\perp} = \operatorname{Ker} p_F$

- Im $p_F \oplus \operatorname{Ker} p_F = E$
- $\forall x \in E$, $p_F(x) \in F$ et $x p_F(x) \in F^{\perp}$.

Remarque

Le projeté orthogonal de $x \in E$ est le seule vecteur $y \in E$ tel que $y \in F$ et $x - y \in F^{\perp}$. Pratique pour le trouver!

Exercice: CCINP 80

Soit E l'espace vectoriel des applications continues et 2π -périodiques de $\mathbb R$ dans $\mathbb R$.

- 1. Démontrer que $(f \mid g) = \frac{1}{2\pi} \int_0^{2\pi} f(t) g(t) dt$ définit un produit scalaire sur E.
- 2. Soit F le sous-espace vectoriel engendré par $f: x \mapsto \cos x$ et $g: x \mapsto \cos(2x)$.

Déterminer le projeté orthogonal sur F de la fonction $u: x \mapsto \sin^2 x$.

1. On pose $\forall (f,g) \in E^2$, $(f|g) = \frac{1}{2\pi} \int_0^{2\pi} f(t)g(t)dt$.

Par linéarité de l'intégrale, (|) est linéaire par rapport à sa première variable.

Par commutativité du produit sur \mathbb{R} , (|) est symétrique.

On en déduit que (|) est une forme bilinéaire symétrique. (*)

Soit
$$f \in E$$
. $(f|f) = \frac{1}{2\pi} \int_0^{2\pi} f^2(t) dt$.

Or $t \mapsto f^2(t)$ est positive sur $[0,2\pi]$ et $0 < 2\pi$, donc $(f|f) \ge 0$.

Donc (|) est positive. (**)

Soit $f \in E$ telle que (f|f) = 0.

Alors
$$\int_0^{2\pi} f^2(t) dt = 0.$$

Or $t \mapsto f^2(t)$ est positive et continue sur $[0, 2\pi]$.

Donc, f est nulle sur $[0, 2\pi]$.

Or f est 2π -périodique donc f = 0.

Donc (|) est définie. (***)

D'après (*), (**) et (***), (|) est un produit scalaire sur E.

2. On a $\forall x \in \mathbb{R}$, $\sin^2 x = \frac{1}{2} - \frac{1}{2}\cos(2x)$. $x \longmapsto -\frac{1}{2}\cos(2x) \in F.$

De plus, si on note h l'application $x \mapsto \frac{1}{2}$,

$$\left(h|f\right) = \frac{1}{4\pi} \int_0^{2\pi} \cos x \mathrm{d}x = 0 \text{ et } \left(h|g\right) = \frac{1}{4\pi} \int_0^{2\pi} \cos(2x) \mathrm{d}x = 0 \text{ donc } h \in F^\perp \text{ (car } F = \mathrm{Vect}(f,g)).$$

On en déduit que le projeté orthogonal de u sur F est $x \mapsto -\frac{1}{2}\cos(2x)$.

Propriété: Expression en base orthonormale

Soit F un sous-espace vectoriel de dimension finie de E préhilbertien réel, $(e_1, ..., e_p)$ une **base orthonormale** de F. Alors

$$\forall x \in E, \quad p_F(x) = \sum_{i=1}^p (e_i|x)e_i$$

Démonstration

D'après la démonstration du supplémentaire orthogonal.

Remarque

On peut voir le procédé d'orthogonalisation de Schmidt en terme de projection : nous cherchions un vecteur $\varepsilon_j = e_j + \sum_{k=1}^{j-1} \lambda_k \varepsilon_k$

$$e_j = \varepsilon_j - \sum_{k=1}^{j-1} \lambda_k \varepsilon_k. \tag{1}$$

 $\text{Donc, si l'on note } F = \text{Vect}(\varepsilon_1, \dots, \varepsilon_{j-1}), \text{ (\ref{eq:continuous}) est la décomposition de } e_j \text{ dans } F^\perp \oplus F. \text{ Donc } \varepsilon_j = p_{F^\perp}(e_j) \text{ et } -\sum_{k=1}^{j-1} \lambda_k \varepsilon_k = p_F(e_j).$

De plus, ici $(\varepsilon_1,...,\varepsilon_{j-1})$ est une base orthogonale de F, donc $\left(\frac{\varepsilon_1}{\|\varepsilon_1\|},...,\frac{\varepsilon_{j-1}}{\|\varepsilon_{j-1}\|}\right)$ en est une b.o.n. et

 $p_F(e_j) = \sum_{k=1}^{j-1} \left(\frac{\varepsilon_k}{\|\varepsilon_k\|} \Big| e_j\right) \frac{\varepsilon_k}{\|\varepsilon_k\|} = \sum_{k=1}^{j-1} \frac{(\varepsilon_k | e_j)}{\|\varepsilon_k\|^2} \varepsilon_k, \text{ d'où l'expression des } \lambda_k \text{ que l'on avait trouvé}.$

À savoir retrouver plutôt que de connaître par cœur :

Cas particulier

• Projection orthogonale sur une droite : $D = \mathbb{R}a$, où $a \neq 0_E$. Alors $\left(\frac{1}{\|a\|}a\right)$ est une base orthonormée de D et

$$p_D: x \mapsto \left(\frac{1}{\|a\|} a | x\right) \left(\frac{1}{\|a\|} a\right) = \frac{(a|x)}{\|a\|^2} a.$$

(Attention à ne pas oublier le $||a||^2$...)

• Projection orthogonale sur un hyperplan : $H = (\mathbb{R}a)^{\perp}$, où $a \neq 0_E$.

$$p_H: x \mapsto x - \frac{(a|x)}{\|a\|^2}a.$$

Démonstration

Pour la projection sur un hyperplan, si on nomme D la droite $\mathbb{R}a = H^{\perp}$, on a que $E = H \oplus D$ et

$$id_E = p_H + p_D = p_H + \frac{(a|\cdot)}{\|a\|^2}a.$$

Exemple

Soit $E = \mathbb{R}^3$, P le plan d'équation cartésienne x - z = 0.

On note $\mathscr{B} = (e_1, e_2, e_3)$ la base canonique de \mathbb{R}^3 .

Quelle est la matrice dans \mathscr{B} de p_P ? Vecteur normal à P:(1,0,-1). Donc pour tout $x \in \mathbb{R}^3$,

$$p_P\big((x,y,z)\big) = (x,y,z) - \frac{(1,0,-1)\cdot(x,y,z)}{2}(1,0,-1) = \left(\frac{1}{2}(x+z),y,\frac{1}{2}(x+z)\right)$$

Donc $p_P(e1) = \frac{1}{2}(e_1 + e_3), p_P(e2) = e_2$ et $p_P(e3) = \frac{1}{2}(e_1 + e_3)$, et

$$\operatorname{Mat}_{\mathscr{B}}(p_P) = \frac{1}{2} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}.$$

Remarque

Si \mathscr{B} (qui peut être choisie orthonormale) est une base adaptée à la décomposition $E = F \oplus F^{\perp}$,

$$\operatorname{Mat}_{\mathscr{B}}(p_F) = \begin{pmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & \\ & & 0 & \\ & & (0) & & \ddots \\ & & & 0 \end{pmatrix}$$

où les p premiers vecteurs de \mathscr{B} forment une base de $F=\mathrm{Im}(p_F)$ et nous donnent les p premières colonnes avec des 1 sur la diagonale, et les n-p autres forment une base de $F^{\perp}=\mathrm{Ker}\,p_F$ et nous donnent les n-p dernières colonnes nulles.

Propriété : Inégalité de Bessel

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie, p_F la projection orthogonale sur F. Alors

$$\forall x \in E, \|p_F(x)\| \leqslant \|x\|$$

Démonstration

C'est le théorème de Pythagore : $p_F(x) \perp (x - p_F(x))$ donc

$$||x||^2 = ||p_F(x)||^2 + ||x - p_F(x)||^2 \ge ||p_F(x)||^2.$$

Symétries orthogonales

Définition : Symétrie orthogonale

Soit E un espace préhilbertien, F un sous-espace vectoriel de E de dimension finie.

On appelle **symétrie orthogonales par rapport** à F, notée s_F , la symétrie par rapport à F, parallèlement à F^{\perp} . Si F est un hyperplan, on parle de **réflexion**.

Si *F* est une droite vectorielle, on parle de **retournement**.

Remarque : Illustration

Propriétés

(i)
$$\operatorname{Ker}(s_F - i d_E) = F$$

(ii)
$$\operatorname{Ker}(s_F + i d_E) = F^{\perp}$$

(iii)
$$s_F \circ s_F = i d_E$$

(iv)
$$s_F = 2p_F - i d_E$$
.

(v)
$$s_F = p_F - p_{F^\perp}$$

Exemple

Symétrie orthogonale par rapport au plan P de l'exemple précédent.

Comme $s_P = 2p_P - id_{\mathbb{R}^3}$, on obtient l'expression générale

$$s_P((x, y, z)) = (z, y, x)$$

Et alors $Mat_{\mathscr{B}}(s_P) = 2Mat_{\mathscr{B}}(p_P) - I_3$, donc

$$Mat_{\mathscr{B}}(s_P) = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Remarque

Si \mathscr{B} (qui peut être choisie orthonormale) est une base adaptée à la décomposition $E = F \oplus F^{\perp}$,

$$\operatorname{Mat}_{\mathscr{B}}(s_F) = \begin{pmatrix} 1 & & & & & \\ & \ddots & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & -1 \end{pmatrix}$$

où les p premiers vecteurs de \mathscr{B} forment une base de $F=\operatorname{Ker}(s_F-id)$ et nous donnent les p premières colonnes avec des 1 sur la diagonale, et les n-p autres forment une base de $F^{\perp}=\operatorname{Ker}(s_F+id)$ et nous donnent les n-p dernières colonnes avec des -1 sur la diagonale.

À savoir retrouver :

Propriété : Expression d'une réflexion

Soient H est un hyperplan d'un espace euclidien E et a un vecteur non nul de H^{\perp} .

Démonstration

$$s_H(x) = 2p_H(x) - x = 2(x - p_{H^\perp}) - x = x - 2p_{H^\perp}$$

7 Distance à un sous-espace

On a vu que si F est un sous-espace vectoriel d'un espace préhilbertien réel E, alors, pour tout $x \in E$, $\mathbf{d}(x,F) = \inf_{y \in F} \mathbf{d}(x,y) = \inf_{y \in F} \|x - y\|$

Propriété

Soit F est un sous-espace vectoriel de dimension finie d'un espace préhilbertien E, et $x \in E$. Alors la distance de x à F est atteinte en le projeté orthogonal $p_F(x)$ de x sur F, et seulement en ce vecteur :

$$d(x, F) = d(x, p_F(x)) = ||x - p_F(x)||$$

et si d(x, F) = ||x - y|| avec $y \in F$, alors $y = p_F(x)$.

De plus, si $(e_1, ..., e_p)$ est une b.o.n. de F,

$$d(x,F)^{2} = ||x||^{2} - \sum_{k=1}^{p} (e_{k}|x)^{2}.$$

Si, enfin, F^{\perp} est aussi de dimension finie et $(e_{p+1},...,e_n)$ une b.o.n. de F^{\perp}

$$d(x,F)^{2} = \|p_{F^{\perp}}(x)\|^{2} = \sum_{k=p+1}^{n} (e_{k}|x)^{2}.$$

Démonstration

Par théorème de Pythagore, si $y \in F$,

$$||x - p_F(x) + p_F(x) - y||^2 = ||x - p_F(x)||^2 + ||p_F(x) - y||^2$$
.

Donc $||p_F(x) - y|| \le ||x - y||$ avec égalité si et seulement si $||p_F(x) - y|| = 0$ c'est-à-dire $y = p_F(x)$. De plus,

$$d(x,F)^{2} = ||x - p_{F}(x)||^{2} = \sum_{k=p+1}^{n} (e_{k}|x - p_{F}(x))^{2} = \sum_{k=p+1}^{n} (e_{k}|x)^{2}$$

car $(e_k|p_F(x)) = 0$ pour $k \geqslant p + 1$. Et

$$d(x,F)^{2} = \|x - p_{F}(x)\|^{2} = \|x\|^{2} - \|p_{F}(x)\|^{2} = \|x\|^{2} - \sum_{k=1}^{p} (e_{k}|x)^{2}$$

par théorème de Pythagore.

Remarques

- R1 Pratique : plutôt que de calculer une bon de F (orthonormalisation de Schmidt), il peut être plus économique d'écrire que $p_F(x)$ est le seul vecteur de $y \in F$ tel que $x y \in F^{\perp}$. Connaissant une base quelconque de F, on décompose y dans cette base et on traduit l'orthogonalité de x y à chaque vecteur de la base : autant d'équation que d'inconnues. On résout et on trouve $y = p_F(x)$.
- R2 Si F n'est pas de dimension finie, cette distance n'est pas nécessairement atteinte. Ainsi, par exemple, si $E = \mathcal{C}([0,1],\mathbb{R})$ muni du produit scalaire canonique et si F est le sous-espace vectoriel des fonctions polynomiales, alors $\operatorname{d}(\exp,F)$ n'est pas atteinte car on peut montrer que $\operatorname{d}\left(\exp,x\mapsto\sum_{k=0}^n\frac{x^k}{k!}\right)\xrightarrow{n\to+\infty}0$ donc cette distance est nulle. Ainsi, dire qu'elle serait atteinte serait dire que $\exp\in F$ ce qui est faux (trop de dérivées non nulles ?). On peut d'ailleurs montrer plus généralement, que si $\operatorname{d}(x,F)$ est atteinte pour un $\operatorname{d}(x,F)$ et on peut montrer que si $\operatorname{d}(x,F)$ est le sous-espace vectoriel des fonctions polynomiales, $\operatorname{d}(x,F)$ est atteinte pour un $\operatorname{d}(x,F)$ est le sous-espace vectoriel des fonctions polynomiales, $\operatorname{d}(x,F)$ est atteinte pour un $\operatorname{d}(x,F)$ es

Exercice: CCINP 81

On définit dans $\mathcal{M}_2(\mathbb{R}) \times \mathcal{M}_2(\mathbb{R})$ l'application φ par : $\varphi(A, A') = \operatorname{tr}({}^t A A')$, où $\operatorname{tr}({}^t A A')$ désigne la trace du produit de la matrice ${}^t A$ par la matrice A'.

On admet que φ est un produit scalaire sur $\mathcal{M}_2\left(\mathbb{R}\right)$.

On note
$$\mathscr{F} = \left\{ \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, (a,b) \in \mathbb{R}^2 \right\}.$$

- 1. Démontrer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2\left(\mathbb{R}\right)$.
- 2. Déterminer une base de \mathscr{F}^{\perp} .

- 3. Déterminer la projection orthogonale de $J=\begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ sur \mathscr{F}^{\perp} .
- 4. Calculer la distance de J à \mathscr{F} .
- 1. On a immédiatement $\mathscr{F}=\mathrm{Vect}(\mathrm{I}_2,K)$ avec $K=\left(\begin{array}{cc}0&1\\-1&0\end{array}\right)$.

On peut donc affirmer que \mathscr{F} est un sous-espace vectoriel de $\mathscr{M}_2(\mathbb{R})$.

 $\mathscr{F} = \text{Vect}(I_2, K)$ donc (I_2, K) est une famille génératrice de \mathscr{F} .

De plus, I_2 et K sont non colinéaires donc la famille (I_2, K) est libre.

On en déduit que (I_2, K) est une base de \mathscr{F} .

2. Soit
$$M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$$
.

Comme (I_2, K) est une base de \mathscr{F} ,

 $M \in \mathscr{F}^{\perp} \Longleftrightarrow \varphi(M, I_2) = 0 \text{ et } \varphi(M, K) = 0.$

C'est-à-dire, $M \in \mathscr{F}^{\perp} \Longleftrightarrow a+d=0$ et b-c=0.

Ou encore, $M \in \mathscr{F}^{\perp} \iff d = -a \text{ et } c = b$.

On en déduit que $\mathscr{F}^{\perp} = \operatorname{Vect}(A, B)$ avec $A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

(A,B) est une famille libre et génératrice de \mathscr{F}^{\perp} donc (A,B) est une base de \mathscr{F}^{\perp} .

3. On peut écrire $J = I_2 + B$ avec $I_2 \in \mathscr{F}$ et $B \in \mathscr{F}^{\perp}$.

Donc le projeté orthogonal de J sur \mathscr{F}^{\perp} est $B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

4. On note $d(J, \mathcal{F})$ la distance de J à \mathcal{F} .

D'après le cours, $d(J, \mathscr{F}) = ||J - p_{\mathscr{F}}(J)||$ où $p_{\mathscr{F}}(J)$ désigne le projeté orthogonal de J sur \mathscr{F} .

On peut écrire à nouveau que $J = I_2 + B$ avec $I_2 \in \mathscr{F}$ et $B \in \mathscr{F}^{\perp}$.

Donc $n_{\infty}(I) = I_2$

On en déduit que $d(J, \mathcal{F}) = ||J - p_{\mathcal{F}}(J)|| = ||J - I_2|| = ||B|| = \sqrt{2}$.

Exercice: CCINP 82

Soit E un espace préhilbertien et F un sous-espace vectoriel de E de dimension finie n > 0.

On admet que, pour tout $x \in E$, il existe un élément unique y_0 de F tel que $x - y_0$ soit orthogonal à F et que la distance de x à F soit égale à $\|x - y_0\|$.

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix}$, on pose $(A \mid A') = aa' + bb' + cc' + dd'$.

- 1. Démontrer que (.|.) est un produit scalaire sur $\mathcal{M}_2(\mathbb{R})$.
- 2. Calculer la distance de la matrice $A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}$ au sous-espace vectoriel F des matrices triangulaires supérieures.
- 1. On pose $E = \mathcal{M}_2(\mathbb{R})$

Pour
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
 et $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E$, on pose $(A|A') = aa' + bb' + cc' + dd'$.

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
, $A' = \begin{pmatrix} a' & b' \\ c' & d' \end{pmatrix} \in E$, $B = \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \in E$. Soit $\alpha \in \mathbb{R}$.

$$(A+A'|B) = \begin{pmatrix} a+a' & b+b' \\ c+c' & d+d' \end{pmatrix} | \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix}) = (a+a')a'' + (b+b')b'' + (c+c')c'' + (d+d')d''.$$

Donc
$$(A + A'|B) = (aa'' + bb'' + cc'' + dd'') + (a'a'' + b'b'' + c'c'' + d'd'') = (A|B) + (A'|B)$$

$$(\alpha A|B) = \left(\begin{pmatrix} \alpha a & \alpha b \\ \alpha c & \alpha d \end{pmatrix} \middle| \begin{pmatrix} a'' & b'' \\ c'' & d'' \end{pmatrix} \right) = \alpha a a'' + \alpha b b'' + \alpha c c'' + \alpha d d'' = \alpha (A|B).$$

On en déduit que (.|.) est linéaire par rapport à sa première variable.

De plus, par commutativité du produit sur \mathbb{R} , (.|.) est symétrique.

Donc (.|.) est une forme bilinéaire et symétrique. (*)

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
.

$$(A|A) = a^2 + b^2 + c^2 + d^2 \ge 0$$
. Donc (.|.) est positive. (**)

Soit
$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in E$$
 telle que $(A|A) = 0$.

Alors $a^2 + b^2 + c^2 + d^2 = 0$.

Comme il s'agit d'une somme de termes tous positifs, on en déduit que a = b = c = d = 0 donc A = 0.

Donc (.|.) est définie. (***)

D'après (*), (**) et (***), (.|.) est un produit scalaire sur E.

$$2. \quad A = \begin{pmatrix} 1 & 0 \\ -1 & 2 \end{pmatrix}.$$

On a
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}$$
.

$$\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix} \in F \text{ et} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} \in F^{\perp} \text{ car } \forall (a,b,d) \in \mathbb{R}^3, \begin{pmatrix} \begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix} | \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \end{pmatrix} = 0.$$

On en déduit que le projeté orthogonal, noté $p_F(A)$, de A sur F est la matrice $\begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$.

Ainsi,
$$d(A, F) = ||A - p_F(A)|| = ||\begin{pmatrix} 0 & 0 \\ -1 & 0 \end{pmatrix}|| = 1.$$

8 Hyperplans affines d'un espace euclidien

Définition: Vecteur normal

Soit $\mathscr{H} = A + \vec{H}$ un hyperplan affine d'un espace euclidien E, A étant un point de E et \vec{H} un hyperplan linéaire. On appelle **vecteur normal** à \mathscr{H} , tout vecteur \vec{n} de $\vec{H}^{\perp} \setminus \{0_E\}$.

Propriétés

- (i) Tous les vecteurs normaux de ${\mathcal H}$ sont colinéaires.
- (ii) Si \vec{n} est un vecteur normal à \mathcal{H} , $M \in \mathcal{H} \iff \overrightarrow{AM} \perp \vec{n}$.

Démonstration

$$\vec{H} = \operatorname{Vect} \vec{n}$$
.

Corollaire

Soit $\mathscr{B}(e_1,...,e_n)$ une **base orthonormale** de $E,\mathscr{R}=(0,\mathscr{B})$ un repère orthonormal.

 $\vec{n}(a_1,...,a_n)$ est un vecteur normal de $\mathcal H$ si et seulement si $\mathcal H$ a une équation de la forme $a_1x_1+\cdots+a_nx_n=b$ dans $\mathcal R$.

Exemples

- E1 Dans \mathbb{R}^2 muni de sa structure euclidienne canonique, si ax + by = c est une équation de \mathscr{H} dans un repère orthonormal, alors $\vec{n}(a,b)$ est un vecteur normal à \mathcal{H} .
- $E2 Dans \mathbb{R}^3$ muni de sa structure euclidienne canonique, si ax + by + cz = d est une équation de \mathcal{H} dans un repère orthonormal, alors $\vec{n}(a, b, c)$ est un vecteur normal à \mathcal{H} .

Propriété : Distance à un hyperplan affine

Soit \mathcal{H} un hyperplan affine de E euclidien. Soit A un point de \mathcal{H} et \vec{n} un vecteur normal à E.

Si $a_1x_1 + ... + a_nx_n = b$ est une équation de \mathcal{H} en repère orthonormal et si $M(x_1,...,x_n)$, alors

$$\mathrm{d}(\mathrm{M},\mathcal{H}) = \frac{\left|\overrightarrow{\mathrm{AM}} \cdot \vec{n}\right|}{\|\vec{n}\|}.$$

$$d(M, \mathcal{H}) = \frac{|a_1x_1 + ... + a_nx_n - b|}{\sqrt{a_1^2 + ... + a_n^2}}.$$

Exemple

Déterminer les équations des bissectrices, dans un repère orthonormal du plan, de $\mathscr{D}: 3x+4y=7$ et $\mathscr{D}': 5x-12y=-7$.

Démonstration

$$d(M, \mathcal{H}) = d\left(\overrightarrow{AM}, \vec{H}\right) = \left\| p_{\vec{H}^{\perp}} \left(\overrightarrow{AM}\right) \right\| = \left\| \frac{\overrightarrow{AM} \cdot \vec{n}}{\|\vec{n}\|^2} \vec{n} \right\| = \frac{\left| \overrightarrow{AM} \cdot \vec{n} \right|}{\|\vec{n}\|}.$$
Avec $\vec{n}(a_1, \dots, a_n)$

Avec $\vec{n}(a_1,\ldots,a_n)$,

$$\overrightarrow{AM} \cdot \vec{n} = a_1 \left(x_1 - x_1^{(0)} \right) + \dots + a_n \left(x_n - x_n^{(0)} \right) = a_1 x_1 + \dots + a_n x_n - b.$$