DEVOIR LIBRE N°11 - SUJET CCINP

2020

 $(T_{n,N})_{n\geqslant 1,N\geqslant 2}$ est une suite de variables aléatoires discrètes réelles, mutuellement indépendantes, définies sur un même espace probabilisé $(\Omega,\mathcal{A},\mathbb{P})$ et vérifiant :

$$\forall n \ge 1, \ \forall N \ge 2, \ T_{n,N}(\Omega) = \{0; 1; 2\}$$

avec
$$\mathbb{P}(T_{n,N} = 0) = \mathbb{P}(T_{n,N} = 1) = \frac{1}{N}$$
 et $\mathbb{P}(T_{n,N} = 2) = 1 - \frac{2}{N}$.

Soit $N \ge 2$ fixé. On pose :

$$X_N = \sum_{n=1}^{N} \frac{T_{n,N}}{3^n}.$$

On admet que X_N est une variable aléatoire discrète réelle définie sur $(\Omega, \mathcal{A}, \mathbb{P})$.

- 1. Montrer que X_N admet une espérance et une variance et donner leur valeur en fonction de N.
- 2. Justifier que pour tout $\varepsilon > 0$:

$$\lim_{N\to+\infty}\mathbb{P}(|X_N-\mathbb{E}(X_N)|\geqslant\varepsilon)=0.$$

3. Soit $\varepsilon > 0$, démontrer que :

$$\mathbb{P}(|X_N - 1)| \geqslant \varepsilon) \leqslant \mathbb{P}\left(|X_N - \mathbb{E}(X_N)| \geqslant \frac{\varepsilon}{2}\right) + \mathbb{P}\left(|\mathbb{E}(X_N) - 1| \geqslant \frac{\varepsilon}{2}\right).$$

En déduire que pour tout $\varepsilon > 0$:

$$\lim_{N\to+\infty} \mathbb{P}(|X_N-1)| \geqslant \varepsilon) = 0.$$

2019

- Si X est une variable aléatoire à valeurs dans $\mathbb N$ de loi de probabilité donnée par $\forall n \in \mathbb N, \, p_n = P(X=n)$, la fonction génératrice de X est $G_X(t) = \mathbb E \left(t^X\right) = \sum_{n=0}^{+\infty} p_n t^n$.
 - 1. Démontrer que l'intervalle] 1,1[est inclus dans l'ensemble de définition de la fonction G_X .
 - 2. Soient X_1 et X_2 deux variables aléatoires indépendantes à valeurs dans \mathbb{N} .

On pose $S = X_1 + X_2$, démontrer que pour tout $t \in]-1,1[$, $G_S(t) = G_{X_1}(t)G_{X_2}(t)$ par deux méthodes : l'une en utilisant le produit de Cauchy de deux séries entières et l'autre en utilisant uniquement la définition : $G_X(t) = E(t^X)$.

On généralise ce résultat, que l'on pourra utiliser dans la question suivante, à n variables aléatoires mutuellement indépendantes à valeurs dans $\mathbb N$ (on ne demande pas de preuve de cette récurrence).

3. Un sac contient quatre boules : une boule numérotée 0, deux boules numérotées 1 et une boule numérotée 2. On effectue n tirages d'une boule avec remise et on note S_n la somme des numéros tirés. Déterminer pour tout $t \in]-1,1[$, $G_{S_n}(t)$ et en déduire la loi de S_n .

2016

- 1. Démontrer que la famille $\left(\frac{i+j}{2^{i+j}}\right)_{(i,j)\in\mathbb{N}^2}$ est sommable et calculer sa somme.
- 2. Soient *X* et *Y* deux variables aléatoires sur un même espace probabilisé à valeurs dans N. On suppose que la loi conjointe du couple (*X*, *Y*) vérifie :

$$\forall (i,j) \in \mathbb{N}^2, \mathbb{P}(X=i,Y=j) = \mathbb{P}[(X=i) \cap (Y=j)] = \frac{i+j}{2^{i+j+3}}.$$

- (a) Vérifier que la relation ci-dessus définit bien une loi conjointe.
- (b) Démontrer que les variables *X* et *Y* suivent une même loi que l'on déterminera.
- (c) Les variables aléatoires *X* et *Y* sont elles indépendantes?

2015

Exercice I.

1. Soit X une variable aléatoire qui suit une loi de Poisson de paramètre $\lambda > 0$. Déterminer sa fonction génératrice, puis en déduire son espérance et sa variance.

Partie 4 du problème : Démonstration du théorème d'approximation de Weierstrass

On propose dans cette partie une démonstration probabiliste du théorème d'approximation de Weierstrass pour une fonction continue sur [0,1].

 $f:[0,1]\to\mathbb{R}$ est une fonction continue, n un entier naturel non nul et $x\in[0,1]$.

On pose :
$$B_n(f)(x) = \sum_{k=0}^n \binom{n}{k} f\left(\frac{k}{n}\right) x^k (1-x)^{n-k}$$
 (polynôme de Bernstein).

- 1. S_n une variable aléatoire réelle suivant une loi binomiale $\mathcal{B}(n,x)$.
 - (a) Démontrer que, pour tout réel $\alpha > 0$, $P(|Sn nx| > n\alpha) \le \frac{1}{4n\alpha^2}$.
 - (b) Soit la variable aléatoire $f\left(\frac{S_n}{n}\right)$, démontrer que son espérance vérifie :

$$\mathbb{E}\left[f\left(\frac{S_n}{n}\right)\right] = B_n(f)(x)$$

- 2. (a) Soit $\varepsilon > 0$, justifier simplement qu'il existe $\alpha > 0$ tel que pour tout couple $(a,b) \in [0,1]^2$, $|a-b| \le \alpha$ entraı̂ne $|f(a)-f(b)| < \varepsilon$, puis majorer $\left|f\left(\frac{k}{n}\right)-f(x)\right|$, pour tout entier k entre 0 et n vérifiant $\left|\frac{k}{n}-x\right| \le \alpha$.
 - (b) Justifier que $\left|\sum_{\left|\frac{k}{n}-x\right|>\alpha}\left(f\left(\frac{k}{n}\right)-f(x)\right)\mathbb{P}(S_n=k)\right| \leqslant 2\|f\|_{\infty}\mathbb{P}\left(\left|\frac{S_n}{n}-x\right|>\alpha\right).$
 - (c) Démontrer qu'il existe un entier naturel n_0 tel que pour tout $n > n_0$ et tout réel $x \in [0,1]$, $|B_n(f)(x) f(x)| < 2\varepsilon$, puis conclure.