e3a 2016 - PSI 2 Un corrigé

Partie I

1. $t \mapsto t^s \ln(t)$ est continue sur]0,1] et on a un unique pb au voisinage de 0. Or, $t^s \ln(t) = t^{\frac{s-1}{2}}$ (le quotient vaut $t^{\frac{s+1}{2}} \ln(t)$ qui est de limite nulle en 0 par croissances comparées car s+1>0) et $\frac{s-1}{2}>-1$. On a donc intégrabilité au voisinage de 0 (comparaison aux fonctions de Riemann) et J_s existe.

Une intégration par parties $(t \mapsto t^{s+1} \text{ et ln sont } \mathscr{C}^1 \text{ sur }]0,1])$ donne $\int_s^1 t^s \ln t \, dt = \left[\frac{t^{s+1}}{s+1} \ln(t) \right]_s^1 - \frac{1}{s+1} \int_s^1 t^s dt.$

Le terme tout intégré admet une limite nulle en 0 par croissances comparées et on trouve $J_s = -\frac{1}{(s+1)^2}$.

2. (a) Soit $x \in \mathbb{R}$. $f_x : t \mapsto \frac{t^x \ln(t)}{(t-1)}$ est continue sur]0,1[, prolongeable par continuité en 1 par la valeur 1 (car $\ln(t) \sim_1 (t-1)$) et équivalente en 0 à $-t^x \ln(t)$.

Si x > -1, f_x est intégrable au voisinage de 0 (question précédente).

Si $x \le -1$, $tf_x(t) \to +\infty$ quand $t \to 0$ et f_x n'est pas intégrale.

Enfin, f_x est positive et son intégrabilité équivaut à l'existence de son intégrale. Ainsi $D_H =]-1, +\infty[$.

- (b) Si $x \le y$ alors pour tout]0,1[, $t^x = \exp(x \ln(t)) \ge \exp(y \ln(t)) = t^y$ (car $\ln(t) \le 0$). On multiplie par $\frac{\ln(t)}{t-1} \ge 0$ et on intégre sur]0,1[quand x > -1. On trouve que $\forall -1 < x \le y$, $H(x) \ge H(y)$ et $H(x) \ge 0$ et donc décroissante sur son domaine.
- (c) La fonction proposée est continue sur]0,1[, de limite nulle en 1 (car $\ln(t) \sim_1 (t-1)$) et de limite nulle en 0 (par croissances comparées et car $\alpha > 0$). Ainsi, cette fonction est prolongeable en une fonction continue sur le SEGMENT [0,1] et donc bornée sur ce segment.
- (d) On utilise le théorème de classe \mathscr{C}^1 des intégrales à paramètres.

H1 $\forall t \in]0,1[, x \mapsto \frac{t^x \ln(t)}{t-1}$ est de classe \mathscr{C}^1 sur $]-1,+\infty[$, de dérivée $x \mapsto \frac{t^x (\ln(t))^2}{t-1}$.

H2 $\forall x > -1$, $t \mapsto \frac{t^x \ln(t)}{t-1}$ est intégrable sur]0, 1[.

- **H3** (1) $\forall t \in]0,1[,x \mapsto \frac{t^x(\ln(t))^2}{t-1}$ est continue sur F_H vu **H1**.
 - (2) $\forall x > -1, \ t \mapsto \frac{t^x (\ln(t))^2}{t-1}$ est continue sur]0,1[.
 - (3) $\forall x \in [a, b] \subset]-1, +\infty[, \forall t \in]0, 1[, \left| \frac{t^x (\ln(t))^2}{t-1} \right| \leq \frac{t^a (\ln(t))^2}{1-t} = \phi_a(t)$

Lorsque a>0, ϕ_a est continue sur]0,1[et borné (question précédente) et donc intégrable sur le SEGMENT [0,1].

Lorsque $-1 < a \le 0$, on a toujours ϕ_a est continue sur]0, 1[de limite nulle en 1, et $\phi_a(t) = [t \to 0^+] \frac{1}{t^7}$ avec $-a < \gamma < 1$ donc ϕ_a est intégrable au voisinage de 0^+ par comparaison à une intégrale de Riemann convergente puis sur]0, 1[.

Le théorème s'applique et indique que $H \in \mathcal{C}^1(]-1,+\infty[)$ avec $\forall x > -1, H'(x) = \int_0^1 \frac{t^x(\ln(t))^2}{t-1} dt$.

La fonction intégrée étant négative H' est négative sur $]-1,+\infty[$ et $\Big($ on retrouve la décroissance de H.

1

(e) **Rédaction soufflée par l'énoncé :** On applique le théorème de convergence dominée à

$$f_n: t \in]0,1[\mapsto \frac{t^{x_n} \ln t}{t-1} = \frac{e^{x_n \ln t} \ln t}{t-1}$$

avec $(x_n) \in D_H^{\mathbb{N}}$ telle que $x_n \to +\infty$. On va dominer par une fonction semblable à celle de (c), notons qu'à partir d'un certain rang, $x_n \ge 1$. On peut, sans perte de généralité (ça ne change pas la limite), supposer que ce rang est 0, ie $\forall n \in \mathbb{N}, \ x_n \ge 1$.

H1 Pour tout $n \in \mathbb{N}$, f_n est continue sur]0, 1[.

H2 Pour tout $t \in]0,1[$, $f_n(t) \xrightarrow[n \to +\infty]{} 0$, l'application nulle étant bien continue sur]0,1[.

H3 $\forall n \in \mathbb{N}, \ \forall t \in]0,1[, |f_n(t)| \le \frac{t \ln t}{t-1} = \psi(t)$ avec ψ continue sur]0,1[et prolongeable par continuité en 0 (valeur 0) et 1 (valeur 1) donc intégrable.

On en déduit que $H(x_n) \xrightarrow[n \to +\infty]{} \int_0^1 0 \, dt = 0$ et, par caractérisation séquentielle $H(x) \xrightarrow[x \to +\infty]{} 0$.

Autre rédaction possible : Soit x > 0. La fonction $g: t \mapsto \frac{t \ln(t)}{t-1}$ est continue sur]0, 1[et prolongeable par continuité en 0 (valeur 0) et 1 (valeur 1). C'est donc une fonction bornée sur]0, 1[. Une majoration grossière donne

$$\forall x > 0, |H(x)| \le ||g||_{\infty} \int_{0}^{1} t^{x-1} dt = \frac{||g||_{\infty}}{x}$$

On en déduit que $H(x) \xrightarrow[x \to +\infty]{} 0$ et en particulier (caractérisation séquentielle) que $H(x_n) \to 0$ si $x_n \to 0$.

(f) On a
$$H(x) - H(x+1) = \int_0^1 \frac{t^x (1-t) \ln(t)}{t-1} dt = -J_x = \boxed{\frac{1}{(x+1)^2}}.$$

(g) H étant continue en 0 (et même dérivable), $H(x+1) \rightarrow H(0)$ quand $x \rightarrow -1$ est négligeanle devant

 $1/(x+1)^2$ au voisinage de -1. Ainsi la question précédente donne $H(x) = \frac{1}{(x+1)^2} + \frac{1}{(x+1)^2} \sim \frac{1}{(x+1)^2}$

(h) i. $\frac{1}{(x+k)^2} \sim \frac{1}{k^2}$ qui est le terme général positif d'une série convergente (Riemann).

Par comparaison, $\sum_{k\geqslant 1} \frac{1}{(x+k)^2}$ converge.

ii. Soit $n \ge 1$. Comme pour tout $k \in [1, n]$, $H(x+k-1)-H(x+k) = \frac{1}{x+k}$, en sommant et en télescopant dans le membre de gauche, $H(x) = \sum_{k=1}^{n} \frac{1}{(x+k)^2} + H(x+n)$.

iii. Comme H est de limite nulle en $+\infty$ et comme la série converge, on peut faire tendre n vers $+\infty$ pour

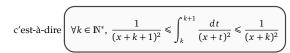
obtenir
$$H(x) = \sum_{k=1}^{\infty} \frac{1}{(x+k)^2}$$
. En particulier, $H(0) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$ et $H(1) = H(0) - 1 = \frac{\pi^2}{6} - 1$.

Partie 2

1. $h_x: t \mapsto \frac{1}{(x+t)^2}$ décroît sur $]-x,+\infty[$ et donc sur $]1,+\infty[$. On en déduit que

$$\forall k \in \mathbb{N}^*, \ h_x(k+1) \le \int_k^{k+1} h_x(t) \, dt \le h_x(k)$$

2



2. Sommons ces inégalités pour k = 1, 2, ..., n:

$$\sum_{k=1}^{n} \frac{1}{(x+k+1)^2} \le \int_{1}^{n+1} \frac{dt}{(x+t)^2} = \left[-\frac{1}{t+x} \right]_{t=1}^{t=n+1} \le \sum_{k=1}^{n} \frac{1}{(x+k)^2}$$

Tous les termes admettent une limite quand $n \to +\infty$ et le passage à la limite donne

$$H(x) - \frac{1}{(x+1)^2} \le \frac{1}{1+x} \le H(x)$$

ou encore

$$\frac{1}{1+x} \le H(x) \le \frac{1}{1+x} + \frac{1}{(1+x)^2}$$

Majorant et minorant possédant en $+\infty$ l'équivalent commun $\frac{1}{x}$, on en déduit que $H(x) \underset{x \to +\infty}{\sim} \frac{1}{x}$.

- 3. (a) $H(n) \sim \frac{1}{n}$, le termé général positif d'une série divergente donc $\left(\sum_{n} u_{n}\right)$ diverge.
 - $(u_n) = (H(n))$ décroît et tend vers 0, donc, par théorème spécial sur des séries alternées,
- $\sum (-1)^n u_n$ converge.
 - (b) Ici, le théorème d'inversion N_1 ne s'applique pas car la série $\sum_n u_n$ diverge, et comme on n'intègre pas sur un segment, inutile de s'intéresser à la converge uniforme. On peut alors appliquer le théorème de convergence dominée soit aux sommes partielles (série géométrique), soit au reste (via le TSSA). On choisit (arbitrairement) les sommes partielles. Notons $S_n: t \mapsto \sum_{i=1}^n (-1)^k \frac{t^k \ln(t)}{t-1}$.
 - **H1** $\forall n, S_n \in \mathcal{C}^0(]0,1[).$
 - **H2** (S_n) converge simplement sur]0,1[vers $t\mapsto \frac{\ln(t)}{t^2-1}$ (on reconnaît en $\sum((-1)^nt^n)$ une série géométrique). Cette limite simple est continue sur]0,1[.
 - **H3** Pour tout $n \in \mathbb{N}$ et tout $t \in]0,1[$, $|S_n(t)| = \left| \frac{(1-(-t)^{n+1})\ln(t)}{t^2-1} \right| \le \frac{2|\ln(t)|}{1-t^2} = \phi(t)$. ϕ est continue sur]0,1[, prolongeable par continuité en 1 (valeur 1) et $1/\sqrt{t}$ au voisinage de 0 (équivalent à $\ln(t)$), donc est donc intégrable sur]0,1[.

Par théorème de convergence dominée, on a $\sum_{n=0}^{\infty} (-1)^n u_n = \int_0^1 \frac{\ln(t)}{t^2 - 1} dt.$

(c) $v \mapsto v^2$ étant de classe C^1 sur]0,1[à dérivée qui ne s'annule pas, on peut effectuer le changement de variable $u = v^2$ pour obtenir $\int_0^1 \frac{\ln(v)}{v^2 - 1} \, dv = \int_0^1 \frac{\ln(\sqrt{u})}{u - 1} \, \frac{du}{2\sqrt{u}} = \frac{1}{4} H\left(-\frac{1}{2}\right).$

Partie 3

1. (a) Sous réserve d'existence, une intégration par parties donne

$$I_{p,q} = \left[\frac{t^{p+1}}{p+1}(\ln(t))^q\right]_0^1 - \frac{q}{p+1} \int_0^1 t^p \ln(t)^{q-1} dt$$

Le terme tout intégré est de limite nulle en 0 (croissances comparées) et ceci légitime l'intégration par parties (et l'énoncé admet l'existence des $I_{p,q}$) et donc $I_{p,q} = -\frac{q}{p+1}I_{p,q-1}$.

- (b) On prouve alors par récurrence (sur q) que $I_{p,q} = (-1)^q \frac{q!}{(p+1)^q} I_{p,0} = (-1)^q \frac{q!}{(p+1)^{q+1}}$.
- 2. (a) $t \mapsto \frac{(\ln t)^{n+1}}{t-1}$ est continue sur]0,1[, négligeable devant $1/\sqrt{t}$ au voisinage de 0 (croissances comparées) et prolongeable par continuité en 1 (valeur 1 si n = 0 et 0 si $n \ge 1$). C'est donc une fonction intégrable sur]0,1[et B_n existe.
 - (b) On sait que $\forall t \in]0,1[, \frac{1}{1-t} = \sum_{k=0}^{+\infty} t^k.$

Posons donc $g_k: t \mapsto (\ln t)^{n+1} t^k$ (n est fixé).

- H1 $\sum g_k$ converge simplement sur]0,1[et sa somme est $t\mapsto \frac{(\ln t)^{n+1}}{t-1}$ qui est continue sur]0,1[.
- **H2** Les g_k sont toutes continues sur]0,1[et prolongeable par continuité à [0,1], donc intégrables sur]0,1[.
- **H3** $\int_0^1 |g_k| = (-1)^{n+1} \int_0^1 g_k = (-1)^{n+1} I_{k,n+1} = \frac{(n+1)!}{(k+1)^{n+2}}$ qui est le terme général d'une série de Riemann convergente car $n+2 \ge 2 > 1$.

Le théorème d'interversion N_1 s'applique et donne $\left(B_n = -\sum_{k=0}^{+\infty} \int_0^1 g_k = -\sum_{k=0}^{+\infty} I_{k,n+1}\right)$

(c) Avec la question 1, on en déduit (avec changement d'indice) que

$$B_n = \sum_{k=0}^{+\infty} (-1)^n \frac{(n+1)!}{(k+1)^{n+2}} = (-1)^n (n+1)! Z_{n+2}.$$

3. Avec la série exponentielle, on a $\forall x > -1$, $H(x) = \int_0^1 \sum_{k=0}^{1+\infty} \frac{(\ln t)^{k+1}}{t-1} \frac{x^k}{k!} dt$.

La convergence N_1 n'étant pas facile à mettre en œuvre ici sans connaissance sur les séries entières, on applique le théorème de convergence dominée aux sommes partielles (exponentielles).

Fixons
$$x \in]-1,1[$$
 et notons $h_k: t \mapsto \frac{(\ln t)^{k+1}}{t-1} \frac{x^k}{k!}$

- **H1** Les h_k sont continues sur]0,1[
- H2 $\sum h_k$ converge simplement sur]0,1[et sa somme est $t \mapsto \frac{t^x \ln(t)}{t-1}$ qui est continue sur]0,1[.
- **H3** On a $\forall n \in \mathbb{N}, \ \forall t \in]0,1[$, $\left|\sum_{k=0}^n h_k(t)\right| \le \sum_{k=0}^{+\infty} |h_k(t)| = \frac{t^{-|x|}|\ln(t)|}{|t-1|} = \phi(t)$. Comme |x| < 1, -|x| > -1 et ϕ est continue et bien intégrable sur]0,1[.

On peut appliquer le théorème de convergence dominée pour intervertir somme et intégrale et conclure que

$$\forall x \in]-1,1[, H(x) = \sum_{k=0}^{+\infty} (-1)^k (k+1) Z_{k+2} x^k.$$