J. LAROCHETTE VERSION DU 21 AVRIL 2021

CHAPITRE XI

Séries de fonctions

 \mathbb{K} désigne \mathbb{R} ou \mathbb{C} . I un intervalle de \mathbb{R} d'intérieur non vide.

CONVERGENCES SIMPLE, UNIFORME, NORMALE

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de \mathbb{K}^I .

Pour tout $n \in \mathbb{N}$, on pose $S_n = \sum_{k=0}^n f_k$, la somme partielle au rang n de la série de fonctions $\sum f_n$.

On souhaite étudier la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ en étudiant $(f_n)_{n\in\mathbb{N}}$ (sur le même schéma que les séries numériques.)

1 Convergence simple

Définition: Convergence simple

On dit que la série de fonctions $\sum f_n$ converge simplement sur I si pour tout $x \in I$, la série $\sum f_n(x)$ converge. Lorsque c'est le cas,

- $f: x \in I \mapsto \sum_{n=0}^{+\infty} f_n(x)$ est appelée **somme** de la série de fonctions $\sum f_n$ et est notée $f = \sum_{n=0}^{+\infty} f_n$.
- Si $n \in \mathbb{N}$, $R_n = f S_n = \sum_{k=n+1}^{+\infty} f_k$ est le reste d'ordre n de la série de fonctions $\sum f_n$.

2 Convergence uniforme

Définition: Convergence uniforme

On dit que la série de fonctions $\sum f_n$ converge uniformément sur I lorsque la suite de fonctions $(S_n)_n$ converge uniformément sur I, c'est-à-dire lorsqu'il existe $f:I\to \mathbb{K}$ tel que

- à partir d'un certain rang, $S_n f$ bornée sur I,
- $||S_n f||_{\infty} \xrightarrow[n \to +\infty]{} 0.$

Propriété

- $Si\sum f_n$ converge uniformément sur I vers f, alors elle converge simplement vers f.
- Si on a une suite réelle $(\alpha_n)_n$ telle que $\alpha_n \to 0$ et $\forall x \in I$, $|S_n(x) f(x)| \le \alpha_n$, alors $\sum f_n$ converge uniformément sur I vers f.

Propriété

Soit $\sum f_n$ une série de fonctions convergeant simplement sur I, R_n le reste d'ordre

La série de fonctions $\sum f_n$ converge uniformément sur I si et seulement si la suite de fonctions $(R_n)_n$ converge uniformément sur I vers la fonction nulle.

Propriété

Si la série de fonction $\sum f_n$ converge uniformément sur I, alors la suite de fonctions $(f_n)_n$ converge uniformément vers 0 sur I, c'est-à-dire qu'à partir d'un certain rang les f_n sont bornées et $\|f_n\|_{\infty} \to 0$.

Méthode : Pour montrer que $\sum f_n$ ne converge pas uniformément

On peut rechercher $(a_n) \in I^{\mathbb{N}}$ telle que $f_n(a_n) \neq 0$.

Méthode : Montrer directement une convergence uniforme de série de fonctions

Ce n'est pas simple en général. On commence par la convergence simple de $\sum f_n$ vers f.

Puis on peut tenter

- de majorer uniformément (en x) directement $|R_n| = |S_n f|$,
- de calculer le reste (séries géométriques, télescopiques),
- d'utiliser le critère sur les séries alternées,
- d'effectuer une comparaison série-intégrale

En réalité, la plupart du temps, il y a plus simple : la convergence normale.

3 Convergence normale

Définition: Convergence normale

On dit que la série $\sum f_n$ converge normalement sur I lorsque les f_n sont toutes

bornées et la série numérique $\sum ||f_n||_{\infty}$ converge.

Propriété : La convergence normale implique la convergence uniforme et la convergence absolue

Lorsque la série $\sum f_n$ converge normalement sur I,

- elle converge uniformément,
- pour tout $x \in I$, la série numérique $\sum f_n(x)$ converge absolument.

Méthode : Convergence normale par domination

Pour montrer que $\sum f_n$ converge normalement sur I, on peut rechercher $(\alpha_n)_n \in \mathbb{R}^{\mathbb{N}}$ telle ue

- Pour tout $n \in \mathbb{N}$ et tout $x \in I$, $|f_n(x)| \le \alpha_n$,
- $\sum \alpha_n$ converge.

Propriété : Critère séquentiel de non convergence normale

S'il existe une suite $(a_n)_n \in I^{\mathbb{N}}$ telle que la série $\sum_{n \geqslant 0} f_n(a_n)$ ne converge pas absolument, alors $\sum f_n$ ne converge pas normalement sur I.

II THÉORÈMES DE TRANSFERT

1 Continuité

Théorème : Transfert de continuité

Soit $(f_n)_n$ une suite de fonctions appartenant à \mathbb{K}^I . On suppose que

H1 Pour tout n, f_n est continue sur I.

H2 La série de fonctions $\sum f_n$ converge uniformément au voisinage de chaque point de I (sur tout segment suffit).

Alors

C1
$$f = \sum_{n=0}^{+\infty} f_n$$
 est continue sur I .

2 Double limite

Théorème : de la double limite

Soit $(f_n)_n$ une suite de fonctions appartenant à \mathbb{K}^I , $(b_n)_n \in \mathbb{K}^\mathbb{N}$ et $a \in \overline{I}$ éventuellement infini. On suppose que

H1 $\sum f_n$ converge uniformément vers f au voisinage de a.

H2 Pour tout $n \in \mathbb{N}$, $f_n(x) \xrightarrow[x \to a]{} b_n$.

Alors

C1 $\sum b_n$ converge.

C2
$$f(x) \xrightarrow[x \to a]{} \sum_{k=0}^{+\infty} b_n$$
.

Autrement dit, les limites existant bien : $\lim_{x \to a} \sum_{k=0}^{+\infty} f_n(x) = \sum_{k=0}^{+\infty} \lim_{x \to a} f_n(x)$.

Méthode : Pour montrer une absence de convergence uniforme...

... on peut utiliser la contraposée du théorème de la double limite.

Typiquement, lorsque la série des limites en a est divergente, ou lorsque les deux limites finales ne sont pas égales, c'est qu'il y a un défaut de convergence uniforme au point a.

3 Intégration sur un segment

Théorème : Interversion série-intégrale sur un segment

Si $a, b \in \mathbb{R}$, $(f_n)_n$ une suite de fonction de $\mathbb{K}^{[a,b]}$ tel que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur [a, b]
- **H2** La série de fonctions $\sum f_n$ converge uniformément vers f sur [a,b]

alors

C1
$$f = \sum_{n=0}^{+\infty} f_n$$
 est continue sur $[a, b]$.

C2
$$\sum \int_a^b f_n(t) dt$$
 converge.

C3
$$\sum_{n=0}^{+\infty} \int_{a}^{b} f_n(t) dt = \int_{a}^{b} \sum_{n=0}^{+\infty} f_n(t) dt.$$

4 Primitive

Théorème : Interversion série et primitive

Soient $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $a \in I$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur I.
- **H2** La série de fonctions $\sum f_n$ converge uniformément vers $f = \sum_{n=0}^{+\infty} f_n$ sur tout segment de I.

Alors on pose $F_n: x \mapsto \int_a^x f_n(t) dt$ l'unique primitive de f_n qui s'annule en a et

- **C1** f est continue sur I donc $F: x \mapsto \int_a^x f(t) dt$ unique primitive de f qui s'annule en a existe bien.
- **C2** La série de fonctions $\sum F_n$ converge uniformément sur tout segment de I

$$et F = \sum_{n=0}^{+\infty} F_n.$$

5 Classe \mathscr{C}^p

Théorème : Classe \mathscr{C}^p d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de \mathbb{K}^I , $p \in \mathbb{N}^*$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^p sur I.
- **H2** Pour tout $k \in [0, p-1]$, la série de fonctions $\sum f_n^{(k)}$ converge simplement sur I.
- **H3** La série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

C1
$$f = \sum_{n=0}^{+\infty} f_n$$
 est de classe \mathscr{C}^p sur I .

- **C2** Pour tout $k \in [0, p]$, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.
- **C3** Pour tout $k \in [0, p]$, $\sum f_n^{(k)}$ converge uniformément sur tout segment de I.

Théorème : Classe \mathscr{C}^{∞} d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de \mathbb{K}^I . On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^{∞} sur I.
- **H2** La série de fonctions $\sum f_n$ converge simplement sur I.
- **H3** Pour tout $k \in \mathbb{N}^*$, la série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

C1
$$f = \sum_{n=0}^{+\infty} f_n$$
 est de classe \mathscr{C}^{∞} sur I .

C2 Pour tout
$$k \in \mathbb{N}$$
, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.

III GÉNÉRALISATION À DES SÉRIES VECTORIELLES

 $(E, \|\cdot\|_E)$ et $(F, \|\cdot\|_F)$ sont des \mathbb{K} -espaces vectoriels normés de dimension finie. A est une partie non vide de F.

Pour faire simple, les normes vont remplacer les modules et les boules vont remplacer les intervalles.

1 Convergences simple, uniforme, normale

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions de E^A . Pour tout $n\in\mathbb{N}$, on pose $S_n=\sum_{k=0}^n f_k$.

Définition

On dit que la série de fonction $\sum f_n$

- converge simplement sur A si, pour tout $x \in A$, la série $\sum f_n(x)$ converge.
- converge uniformément sur A si la suite de fonctions $(S_n)_{n\in\mathbb{N}}$ converge uniformément sur A.
- converge uniformément au voisinage de $a \in \overline{A}$ s'il existe r > 0 tel que $(S_n)_{n \in \mathbb{N}}$ converge uniformément sur $A \cap B(a,r)$.

On note, pour $f \in E^A$ bornée, $\|f\|_{\infty} = \sup_{x \in A} \|f(x)\|_E$.

Définition

On dit que la série de fonctions $\sum f_n$ converge normalement sur A si pour tout $n \in \mathbb{N}$, f_n est bornée et si la série $\sum \|f_n\|_{\infty}$ converge.

2 Généralisation des théorèmes de transfert

Théorème: Transfert de continuité

Soit $(f_n)_n$ une suite de fonctions appartenant à E^A , $a \in A$. On suppose que

- **H1** Pour tout n, f_n est continue en a (respectivement sur A).
- **H2** La série de fonctions $\sum f_n$ converge uniformément au voisinage de a (respectivement de chaque point de A).

Alors

C1 $f = \sum_{n=0}^{+\infty} f_n$ est continue en a (respectivement sur A).

Théorème : de la double limite

Soit $(f_n)_n$ une suite de fonctions appartenant à E^A , $(b_n)_n \in E^{\mathbb{N}}$ et $a \in \overline{A}$ (éventuellement infini si $F = \mathbb{R}$). On suppose que

- **H1** $\sum f_n$ converge uniformément vers f au voisinage de a.
- **H2** Pour tout $n \in \mathbb{N}$, $f_n(x) \xrightarrow[x \to a]{} b_n$.

Alors

- C1 $\sum b_n$ converge.
- **C2** $f(x) \xrightarrow[x \to a]{} \sum_{k=0}^{+\infty} b_n$.

Autrement dit, les limites existant bien : $\lim_{x \to a} \sum_{k=0}^{+\infty} f_n(x) = \sum_{k=0}^{+\infty} \lim_{x \to a} f_n(x)$.

Désormais, les fonctions sont considérées de I intervalle de \mathbb{R} d'intérieur non vide vers l'espace vectoriel normé de dimension finie $(E, \|\cdot\|_E)$.

Théorème : Interversion série-intégrale sur un segment

Si $a, b \in \mathbb{R}$, $(f_n)_n$ une suite de fonction de $E^{[a,b]}$ tel que

H1 Pour tout $n \in \mathbb{N}$, f_n est continue sur [a,b]

H2 La série de fonctions $\sum f_n$ converge uniformément vers f sur [a,b]

alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est continue sur [a, b].
- C2 $\sum \int_a^b f_n(t) dt$ converge et $\sum_{n=0}^{+\infty} \int_a^b f_n(t) dt = \int_a^b \sum_{n=0}^{+\infty} f_n(t) dt$.

Théorème : Interversion série et primitive

Soient $(f_n)_n$ une suite de fonction de E^I , $a \in I$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n est continue sur I.
- **H2** La série de fonctions $\sum f_n$ converge uniformément vers $f = \sum_{n=0}^{+\infty} f_n$ sur tout segment de I.

Alors on pose $F_n: x \mapsto \int_a^x f_n(t) dt$ l'unique primitive de f_n qui s'annule en a et

- **C1** f est continue sur I donc $F: x \mapsto \int_a^x f(t) dt$ unique primitive de f qui s'annule en a existe bien,
- **C2** La série de fonctions $\sum F_n$ converge uniformément sur tout segment de I et $F = \sum_{n=0}^{+\infty} F_n$.

Théorème : Classe \mathscr{C}^p d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de E^I , $p \in \mathbb{N}^*$. On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^p sur I.
- **H2** Les séries de fonctions $\sum f_n, \sum f'_n, ..., \sum f_n^{(p-1)}$ convergent simplement sur I.
- **H3** La série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^p sur I.
- **C2** Pour tout $k \in [0, p]$, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$ et la convergence est uniforme sur tout segment de I.

Théorème : Classe \mathscr{C}^{∞} d'une série de fonctions

Soit $(f_n)_n$ une suite de fonction de E^I . On suppose que

- **H1** Pour tout $n \in \mathbb{N}$, f_n de classe \mathscr{C}^{∞} sur I.
- **H2** La série de fonctions $\sum f_n$ converge simplement sur I.
- **H3** Pour tout $k \in \mathbb{N}^*$, la série de fonctions $\sum f_n^{(p)}$ converge uniformément sur tout segment de I.

Alors

- C1 $f = \sum_{n=0}^{+\infty} f_n$ est de classe \mathscr{C}^{∞} sur I.
- **C2** Pour tout $k \in \mathbb{N}$, $f^{(k)} = \sum_{n=0}^{+\infty} f_n^{(k)}$.