Suites vérifiant une relation de récurrence linéaire

RÉCURRENCE LINÉAIRE D'ORDRE 1

Les suites vérifiant une relation de récurrence linéaire d'ordre 1 à cœfficients constants sont les suites arithmético-géométrique, telles qu'on ait $a,b \in \mathbb{K}$ tels que

$$\forall n \in \mathbb{N}, \quad u_{n+1} = au_n + b.$$

Il s'agit d'un problème linéaire associé à l'application linéaire

$$f: \left| \begin{array}{ccc} \mathbb{K}^{\mathbb{N}} & \longrightarrow & \mathbb{K}^{\mathbb{N}} \\ u & \longmapsto & (u_{n+1} - au_n)_{n \in \mathbb{N}} \end{array} \right|$$

L'ensemble des solutions est soit vide, soit un sous-espace affine de direction $\operatorname{Ker} f$.

On vérifie qu'en fait, il n'est jamais vide.

Il s'agit donc des suites de la forme $u=\tilde{u}+v$ où \tilde{u} est une solution particulière qu'on pourra chercher constante (sauf si a=1, mais alors la suite est arithmétique et on sait faire) et v solution de l'équation homogène associée : $\forall n \in \mathbb{N}, \ v_{n+1}=av_n$, c'est-à-dire une suite géométrique de raison a.

Notons que dans ce cas, l'espace (affine) des solutions est de dimension 1.

II RÉCURRENCE LINÉAIRE D'ORDRE 2 HOMOGÈNE

1 Position du problème

Soit $a, b \in \mathbb{K}$ et F l'ensemble des suites u telles que

$$\forall n \in \mathbb{N}, \quad u_{n+2} = au_{n+1} + bu_n. \tag{1}$$

Exemple

La suite de Fibonacci définie par $u_0 = u_1 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$.

- 1. Vérifier que F est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$.
- 2. Vérifier que l'application ϕ : $\begin{vmatrix} F & \longrightarrow & \mathbb{K}^2 \\ u & \longmapsto & (u_0, u_1) \end{vmatrix}$ est un isomorphisme.
- 3. Quelle est la dimension de *F*?

2 Écriture matricielle

On pose, pour $n \in \mathbb{N}$, $U_n = \begin{pmatrix} u_n \\ u_{n+1} \end{pmatrix}$.

4. Montrer que la relation (1) est équivalente à

$$\forall n \in \mathbb{N}, \ U_{n+1} = AU_n \tag{2}$$

où *A* est une matrice carrée d'ordre 2 à déterminer.

5. Si (2) est vérifiée, exprimer U_n en fonction de A et U_0 .

3 Étude dans le cas de diagonalisabilité

6. Démontrer que A est diagonalisable si et seulement si l'équation (E) $r^2 = ar + b$ admet deux racines distinctes.

On suppose que c'est le cas, et on note r_1 et r_2 les deux racines de (E).

- 7. Montrer que les solutions sont les suites de terme général de la forme $u_n = Ar_1^n + Br_2^n$ où $A, B \in \mathbb{K}$.
- 8. Application : terme général et équivalent de la suite de Fibonacci.

4 Étude dans le cas de trigonalisabilité

On suppose ici que (*E*) $r^2 - ar - b = 0$ admet une racine double r_0 .

- 9. Dans quel cas cette racine est-elle nulle?
 On suppose désormais ne pas être dans ce cas.
- 10. Démontrer que A est trigonalisable puis que les solutions sont les suites de terme général de la forme $u_n = (A + nB)r_0^n$ où $A, B \in \mathbb{K}$.
- 11. **Application** : terme général de la suite définie par $u_0 = 1$, $u_1 = -1$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = 2u_{n+1} u_n$.

5 Étude spécifique du cas réel

Si $\mathbb{K}=\mathbb{R}$, il est possible que (*E*) n'ait aucune racine réelle. Plaçons-nous dans ce cas.

L'équation caractéristique a alors deux racines complexes conjuguées $re^{i\theta}$ et $re^{i\theta}$.

- 12. Montrer qu'alors les deux suites de termes généraux $u_n = r^n \cos(n\theta)$ et $v_n = r^n \sin(n\theta)$ forment une base de l'espaces F des solutions. Les solutions sont donc les suites de terme général $u_n = (A\cos(n\theta) + B\sin(n\theta))r^n$ pour $A, B \in \mathbb{R}$.
- 13. **Application**: terme général de la suite définie par $u_0 = 0$, $u_1 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+2} = -u_{n+1} u_n$.

6 Exercices

Déterminer les suites réelles vérifiant

- 14. $u_0 = 1$, $u_1 = 2$ et $\forall n \in \mathbb{N}$, $u_{n+2} = 5u_{n+1} 6u_n$.
- 15. (u_n) est bornée et $\forall n \in \mathbb{N}$, $u_{n+2} = u_{n+1} + u_n$.
- 16. $u_0 > 0$, $u_1 > 0$ et $\forall n \in \mathbb{N}$, $u_{n+2} = \sqrt[3]{u_{n+1}u_n^2}$.
- 17. Soit $p \in \mathbb{N}^*$. À quelle condition sur le réel α existe-t-il des suites réelles non nulles telles que $u_0 = u_p = 0$ et $\forall n \in \mathbb{N}, \ u_{n+2} = 2\cos\alpha \ u_{n+1} u_n$?

7 Utilisation des polynômes d'endomorphisme

On considère l'endomorphisme $\Delta: \left| \begin{array}{ccc} \mathbb{K}^{\mathbb{N}} & \longrightarrow & \mathbb{K}^{\mathbb{N}} \\ u & \longmapsto & (u_{n+1})_{n \in \mathbb{N}} \end{array} \right|.$

- 18. Déterminer un polynôme P tel que $F = \text{Ker}(P(\Delta))$.
- 19. On suppose que *P* a deux racines distinctes : retrouver le résultat du 3. en appliquant le lemme de décomposition des noyaux.
- 20. On suppose que *P* a une racine double : peut-on retrouver le résultat du 4.?

III EXTENSION

Soit $p \ge 2$, $a_0, ..., a_{p-1} \in \mathbb{K}$ et F l'ensemble des suites u telles que

$$\forall n \in \mathbb{N}, \ u_{n+p} = a_{p-1}u_{n+p-1} + \dots + a_0u_n. \tag{1}$$

21. Vérifier que F est un sous-espace vectoriel de $\mathbb{K}^{\mathbb{N}}$. Quelle est la dimension de F?

On pose, pour
$$n \in \mathbb{N}$$
, $U_n = \begin{pmatrix} u_n \\ u_{n+1} \\ \vdots \\ \vdots \\ u_{n+p-1} \end{pmatrix}$

22. Montrer que la relation (1) est équivalente à

$$\forall n \in \mathbb{N}, \quad U_{n+1} = AU_n \tag{2}$$

où *A* est une matrice carrée d'ordre *p* à déterminer.

23. Calculer son polynôme caractéristique. Conclusion?